

SQL	Practice	Problems
57	beginning,	intermediate,	and	advanced

challenges	for	you	to	solve	using	a	"learn-by-
doing"	approach

	
	

Sylvia	Moestl	Vasilik

	
Copyright	©	2016

by	Sylvia	Moestl	Vasilik	All	rights	reserved.	This	book
or	any	portion	thereof	may	not	be	reproduced

or	used	in	any	manner	whatsoever	without	the	express
written	permission	

of	the	publisher	except	for	the	use	of	brief	quotations	in	a
book	review.

	
ISBN:	978-1540422651

	
	

Ordering	Information:	Special	discounts	are	available	on
quantity	purchases	by	corporations,	associations,	and

others.	For	details,	contact	the	publisher	at
info@SQLPracticeProblems.com.

	

mailto:info@SQLPracticeProblems.com

	

How	to	use	this	book
This	edition	of	SQL	Practice	Problems	assumes	that	you
have	some	basic	background	knowledge	about	relational
databases	and	tables.	However,	I’ve	added	some	beginner
level	questions	to	gradually	introduce	the	various	parts	of
the	SQL	Select	statement	for	those	with	less	experience
in	SQL.
A	note	on	the	database	used—the	database	used	for	these
problems,	which	you	will	set	up	in	the	in	the	Installation
Instructions,	is	not	the	standard	Northwind	database.
There	have	been	multiple	modifications	made	to	it,
including	additional	tables,	and	modified	data,	to	support
the	problems	in	this	book.	Do	not	try	to	use	the	standard
Northwind	sample	database	that	came	with	previous
installations	of	SQL	Server,	many	of	the	problems	will
not	work.
Do	you	need	to	finish	all	the	problems?	Absolutely	not.
The	introductory	problems	are	fairly	simple,	so	you	may
want	to	skip	directly	to	the	Intermediate	Problems
section.	If	you’re	not	a	beginner,	but	not	sure	where	you
should	start,	just	take	a	look	at	the	problems	and	expected
results	in	the	Introductory	Problems	section	and	make
sure	you	understand	the	concepts.	If	you	do,	start

working	on	the	Intermediate	Problems	section.
If	you’re	uncertain	about	how	to	start	on	a	problem,	the
hints	are	designed	to	gradually	walk	you	through	how	to
approach	each	problem.	Try	hard	to	solve	the	problems
first	without	the	hints!	The	information	will	stick	better	if
you	can	do	that.	But	if	you’re	stuck,	the	hints	will	get	you
starting	in	thinking	with	a	data	mindset.
If	there’s	code	you	want	to	copy	from	this	book	and	run
on	your	server—believe	it	or	not,	I	recommend	that	you
actually	type	it	out,	instead	of	copying	and	pasting.	Why
go	to	the	hassle	of	re-typing	something?	Science	shows
that	the	act	of	typing	establishes	it	more	firmly	in	your
mind.	Sometimes	when	you	just	copy	and	paste,	the	code
just	goes	directly	from	one	window	in	your	computer	to
another,	without	making	much	impression	on	your
memory.	But	when	you	type	it	out,	you	have	to	focus
much	more,	and	that	helps	tremendously	with	retaining
the	information.
Should	you	search	online	for	answers,	examples,	etc.?
Absolutely.	I	expect	you	do	research	online	throughout
the	book,	and	in	many	places	it’s	necessary.	I	do	not
include	all	the	syntax	in	this	book.	In	my	day-to-day
work	as	a	data	engineer,	I	would	be	lost	without	being
able	to	do	online	research.	Sometimes	I	search	online	just
for	a	reminder	of	a	certain	syntax,	sometimes	for
examples	of	a	particular	type	of	code,	and	sometimes	for

approaches	to	specific	problems.	Learning	to	find
answers	online	effectively	can	cut	your	problem-solving
time	dramatically.
Once	you	finish	all	the	questions,	you’ll	have	some	very
useful	skills	in	data	analysis	and	advanced	Select
statement	usage.	This	isn’t	all	there	is	to	SQL,	of	course.
There’s	also	the	syntax	that	let’s	you	actually	modify	data
(update,	insert,	delete),	DDL	(data	definition	language,
i.e.	how	to	create	and	modify	database	objects),
programming	concept	such	as	stored	procedures,	and	of
course	many	other	topics.
In	this	book,	I’m	only	presenting	problems	involving
retrieving	data	with	Select	statements,	because	that’s	an
area	where	it’s	hard	for	people	to	get	solid	practice	with
real	life	data	problems,	without	actually	working	as	a	data
engineer	or	programmer.	It’s	also	a	critical	first	step	for
almost	any	of	the	other	database	topics.
Any	feedback	would	be	greatly	appreciated.	For	any
questions	or	issues,	please	send	email	to
feedback@SQLPracticeProblems.com	and	I	will	be
happy	to	respond.
	
	

Thank	you	for	purchasing	this	book!

mailto:feedback@SQLPracticeProblems.com

Table	of	Contents	How	to	use	this	book
Setup
Introductory	Problems
1.	Which	shippers	do	we	have?
2.	Certain	fields	from	Categories
3.	Sales	Representatives
4.	Sales	Representatives	in	the	United	States
5.	Orders	placed	by	specific	EmployeeID
6.	Suppliers	and	ContactTitles
7.	Products	with	“queso”	in	ProductName
8.	Orders	shipping	to	France	or	Belgium
9.	Orders	shipping	to	any	country	in	Latin	America
10.	Employees,	in	order	of	age
11.	Showing	only	the	Date	with	a	DateTime	field
12.	Employees	full	name
13.	OrderDetails	amount	per	line	item
14.	How	many	customers?
15.	When	was	the	first	order?
16.	Countries	where	there	are	customers
17.	Contact	titles	for	customers
18.	Products	with	associated	supplier	names
19.	Orders	and	the	Shipper	that	was	used

Intermediate	Problems
20.	Categories,	and	the	total	products	in	each	category
21.	Total	customers	per	country/city
22.	Products	that	need	reordering
23.	Products	that	need	reordering,	continued
24.	Customer	list	by	region
25.	High	freight	charges
26.	High	freight	charges	-	2015
27.	High	freight	charges	with	between
28.	High	freight	charges	-	last	year
29.	Inventory	list
30.	Customers	with	no	orders
31.	Customers	with	no	orders	for	EmployeeID	4
Advanced	Problems
32.	High-value	customers
33.	High-value	customers	-	total	orders
34.	High-value	customers	-	with	discount
35.	Month-end	orders
36.	Orders	with	many	line	items
37.	Orders	-	random	assortment
38.	Orders	-	accidental	double-entry
39.	Orders	-	accidental	double-entry	details
40.	Orders	-	accidental	double-entry	details,	derived
table

41.	Late	orders
42.	Late	orders	-	which	employees?
43.	Late	orders	vs.	total	orders
44.	Late	orders	vs.	total	orders	-	missing	employee
45.	Late	orders	vs.	total	orders	-	fix	null
46.	Late	orders	vs.	total	orders	-	percentage
47.	Late	orders	vs.	total	orders	-	fix	decimal
48.	Customer	grouping
49.	Customer	grouping	-	fix	null
50.	Customer	grouping	with	percentage
51.	Customer	grouping	-	flexible
52.	Countries	with	suppliers	or	customers
53.	Countries	with	suppliers	or	customers,	version	2
54.	Countries	with	suppliers	or	customers	-	version	3
55.	First	order	in	each	country
56.	Customers	with	multiple	orders	in	5	day	period
57.	Customers	with	multiple	orders	in	5	day	period,
version	2
ANSWERS
Introductory	Problems
1.	Which	shippers	do	we	have?
2.	Certain	fields	from	Categories
3.	Sales	Representatives
4.	Sales	Representatives	in	the	United	States

5.	Orders	placed	by	specific	EmployeeID
6.	Suppliers	and	ContactTitles
7.	Products	with	“queso”	in	ProductName
8.	Orders	shipping	to	France	or	Belgium
9.	Orders	shipping	to	any	country	in	Europe
10.	Employees,	in	order	of	age
11.	Showing	only	the	Date	with	a	DateTime	field
12.	Employees	full	name
13.	OrderDetails	amount	per	line	item
14.	How	many	customers?
15.	When	was	the	first	order?
16.	Countries	where	there	are	customers
17.	Contact	titles	for	customers
18.	Products	with	associated	supplier	names
19.	Orders	and	the	Shipper	that	was	used
Intermediate	Problems
20.	Categories,	and	the	total	products	in	each	category
21.	Total	customers	per	country/city
22.	Products	that	need	reordering
23.	Products	that	need	reordering,	continued
24.	Customer	list	by	region
25.	High	freight	charges
26.	High	freight	charges	-	2015

27.	High	freight	charges	with	between
28.	High	freight	charges	-	last	year
29.	Inventory	list
30.	Customers	with	no	orders
31.	Customers	with	no	orders	for	EmployeeID	4
Advanced	Problems
32.	High-value	customers
33.	High-value	customers	-	total	orders
34.	High-value	customers	-	with	discount
35.	Month-end	orders
36.	Orders	with	many	line	items
37.	Orders	-	random	assortment
38.	Orders	-	accidental	double-entry
39.	Orders	-	accidental	double-entry	details
40.	Orders	-	accidental	double-entry	details,	derived
table
41.	Late	orders
42.	Late	orders	-	which	employees?
43.	Late	orders	vs.	total	orders
44.	Late	orders	vs.	total	orders	-	missing	employee
45.	Late	orders	vs.	total	orders	-	fix	null
46.	Late	orders	vs.	total	orders	-	percentage
47.	Late	orders	vs.	total	orders	-	fix	decimal
48.	Customer	grouping

49.	Customer	grouping	-	fix	null
50.	Customer	grouping	with	percentage
51.	Customer	grouping	-	flexible
52.	Countries	with	suppliers	or	customers
53.	Countries	with	suppliers	or	customers,	version	2
54.	Countries	with	suppliers	or	customers	-	version	3
55.	First	order	in	each	country
56.	Customers	with	multiple	orders	in	5	day	period
57.	Customers	with	multiple	orders	in	5	day	period,
version	2

	

	

Setup
This	section	will	help	you	install	Microsoft	SQL	Server
2016,	SQL	Server	Management	Studio	(SSMS)	and	also
walk	you	through	setting	up	the	practice	database.	The
setup	of	Microsoft	SQL	Server	2016	and	SSMS	will	take
about	45	minutes,	with	about	5	minutes	of	interaction
here	and	there.	It	may	take	one	or	two	reboots	of	your
system,	depending	on	which	version	of	certain	support
files	you	have	(dot.net	framework).
SQL	Server	2016	will	run	with	more	recent	versions	of
Windows,	including	Windows	8	and	Windows	10.	Please
review	this	requirements	page
(https://msdn.microsoft.com/en-
us/library/ms143506.aspx)		for	full	details.

https://msdn.microsoft.com/en-us/library/ms143506.aspx

Install	Steps
Pre-setup	-	To	download	the	backup	file	necessary	in
step	3,	as	well	as	a	PDF	version	of	this	book	and	a	SQL
setup	script	to	use	if	you	already	have	SQL	Server	2012
or	SQL	Server	2014,	go	to
www.SQLPracticeProblems.com.	Click	on	the	“Buy
Now”	button.	Don’t	worry,	you	don’t	actually	have	to
buy	anything.	Use	the	100%	off	coupon	code
“KCSPurch”	to	bypass	the	credit	card	information,	and
get	a	download	link	sent	directly	to	your	email	for	free.
You	may	want	to	consider	viewing	this	book	via	the	PDF
instead	of	the	paper	or	Kindle	copy,	since	you’ll	be	able
to	click	on	the	links,	and	copy	and	paste	code	more
easily.
Note:	If	you	already	have	SQL	Server	2012	or	2014
installed,	and	don’t	want	to	install	SQL	Server	2016,	you
don’t	need	to.	There’s	a	setup	script	called
Northwind2012.sql	(also	works	for	SQL	Server	2014)
included	in	the	zipped	file	that	will	allow	you	to	use	your
existing	version.	Open	that	file,	and	follow	the
instructions.	You	can	then	skip	all	the	below	steps.
	
1.	Install	MS	SQL	Server	Express	Edition	2016	-
Download	and	install	MS	SQL	Server	Express	Edition
2016	(https://www.microsoft.com/en-cy/sql-server/sql-
server-editions-express).	It’s	a	free	download,	and	the

https://www.microsoft.com/en-cy/sql-server/sql-server-editions-express

Express	Edition,	unlike	the	Developer	Edition,	doesn’t
require	you	to	jump	through	any	hoops	with
Live.Microsoft.com	subscriptions.Feel	free	to	do	the
Basic	install	unless	you	need	it	to	go	in	a	particular
location	on	your	hard	drive.
The	install	of	Express	Edition	and	SSMS	(in	the	next
step)	will	take	about	45	minutes.	Almost	all	of	this	is
hands-off.	A	reboot	may	be	required,	depending	on	some
of	your	system	files.
2.	SQL	Server	Management	Studio	(SSMS)	2016	-
Download	and	install	SQL	Server	Management	Studio
(SSMS)	2016	(https://msdn.microsoft.com/en-
us/library/mt238290.aspx).This	is	the	tool	that	allows	you
to	interact	with	SQL	Server.	You	can	either	do	this	as	a
part	of	the	MS	SQL	Server	Express	Edition	2016	install
(there’s	a	link	at	the	bottom),	or	download	it	directly.
3.	Move	the	practice	database	-	The	Northwind
database	backup	file	is	included	in	the	zip	file	that	you
downloaded.	Unzip	the	file	Northwind2016.bak	and	place
it	in	the	backup	directory	of	your	SQL	Server	Express
Edition	install.	With	the	Basic	install,	the	default	location
is	here:	C:\Program	Files\Microsoft	SQL
Server\MSSQL13.SQLEXPRESS\MSSQL\Backup.

	

This	practice	database	is	based	on	the	Microsoft	sample
Northwind	database,	but	it’s	been	substantially	modified,

https://msdn.microsoft.com/en-us/library/mt238290.aspx

so	in	order	to	be	able	to	solve	the	problems,	you’ll	need
this	version.
4.	Setup	the	practice	database	-		Follow	the	instructions
on	this	video
(https://www.youtube.com/embed/mBLhXiXIHW0?
rel=0)	to	restore	the	practice	database	that	you	just
downloaded	onto	your	freshly	installed	SQL	Server.
	
Questions	or	problems	with	the	setup?	Email	me	at
feedback@SQLPracticeProblems.com

https://www.youtube.com/embed/mBLhXiXIHW0?rel=0
mailto:feedback@SQLPracticeProblems.com

Introductory	Problems

1.																		Which	shippers	do	we	have?
We	have	a	table	called	Shippers.	Return	all	the	fields
from	all	the	shippers

Expected	Results
ShipperID			CompanyName																														Phone
-----------	--	------------------------
1											Speedy	Express																											(503)	555-9831
2											United	Package																											(503)	555-3199
3											Federal	Shipping																									(503)	555-9931
	
(3	row(s)	affected)
	

Hint
The	standard	format	for	a	select	statement	that	returns	all
columns	and	all	rows	is	“Select	*	from	TableName”.

2.																	Certain	fields	from	Categories
In	the	Categories	table,	selecting	all	the	fields	using	this
SQL:
Select	*	from	Categories

…will	return	4	columns.	We	only	want	to	see	two
columns,	CategoryName	and	Description.

Expected	Results
CategoryName				Description

---------------	--

Beverages							Soft	drinks,	coffees,	teas,	beers,	and	ales	Condiments						Sweet
and	savory	sauces,	relishes,	spreads,	and	seasonings	Confections					Desserts,
candies,	and	sweet	breads	Dairy	Products		Cheeses
Grains/Cereals		Breads,	crackers,	pasta,	and	cereal	Meat/Poultry				Prepared
meats
Produce									Dried	fruit	and	bean	curd	Seafood									Seaweed	and	fish
	
(8	row(s)	affected)

Hint
Instead	of	*	in	the	Select	statement,	specify	the	column
names	with	a	comma	between	them

3.																	Sales	Representatives
We’d	like	to	see	just	the	FirstName,	LastName,	and
HireDate	of	all	the	employees	with	the	Title	of	Sales
Representative.	Write	a	SQL	statement	that	returns	only
those	employees.

Expected	Results
FirstName		LastName													HireDate
----------	--------------------	-----------------------
Nancy						Davolio														2010-05-01	00:00:00.000
Janet						Leverling												2010-04-01	00:00:00.000
Margaret			Peacock														2011-05-03	00:00:00.000
Michael				Suyama															2011-10-17	00:00:00.000
Robert					King																	2012-01-02	00:00:00.000
Anne							Dodsworth												2012-11-15	00:00:00.000
	
(6	row(s)	affected)
	

Hint
To	filter	out	only	certain	rows	from	a	table,	use	a	Where
clause.	The	format	for	a	where	clause	with	a	string	filter
is:
	
Where
				FieldName	=	'Filter	Text'
	

4.																	Sales	Representatives	in	the	United	States
Now	we’d	like	to	see	the	same	columns	as	above,	but
only	for	those	employees	that	both	have	the	title	of	Sales
Representative,	and	also	are	in	the	United	States.

Expected	Results
FirstName		LastName													HireDate
----------	--------------------	-----------------------
Nancy						Davolio														2010-05-01	00:00:00.000
Janet						Leverling												2010-04-01	00:00:00.000
Margaret			Peacock														2011-05-03	00:00:00.000
	
(3	row(s)	affected)
	

Hint
To	apply	multiple	filters	in	a	where	clause,	use	“and”	to
separate	the	filters.

5.																	Orders	placed	by	specific	EmployeeID
Show	all	the	orders	placed	by	a	specific	employee.	The
EmployeeID	for	this	Employee	(Steven	Buchanan)	is	5.

Expected	Results
OrderID					OrderDate	-----------	-----------------------
10248							2014-07-04	08:00:00.000
10254							2014-07-11	02:00:00.000
10269							2014-07-31	00:00:00.000
10297							2014-09-04	21:00:00.000
10320							2014-10-03	12:00:00.000
10333							2014-10-18	18:00:00.000
10358							2014-11-20	05:00:00.000
10359							2014-11-21	14:00:00.000
10372							2014-12-04	10:00:00.000
10378							2014-12-10	00:00:00.000
10397							2014-12-27	17:00:00.000
10463							2015-03-04	13:00:00.000
10474							2015-03-13	16:00:00.000
10477							2015-03-17	02:00:00.000
10529							2015-05-07	01:00:00.000
10549							2015-05-27	03:00:00.000
10569							2015-06-16	15:00:00.000
10575							2015-06-20	22:00:00.000
10607							2015-07-22	09:00:00.000
10648							2015-08-28	22:00:00.000
10649							2015-08-28	00:00:00.000
10650							2015-08-29	06:00:00.000
10654							2015-09-02	07:00:00.000
10675							2015-09-19	06:00:00.000
10711							2015-10-21	03:00:00.000
10714							2015-10-22	03:00:00.000
10721							2015-10-29	08:00:00.000
10730							2015-11-05	07:00:00.000
10761							2015-12-02	08:00:00.000
10812							2016-01-02	02:00:00.000
10823							2016-01-09	17:00:00.000
10841							2016-01-20	21:00:00.000
10851							2016-01-26	00:00:00.000
10866							2016-02-03	01:00:00.000
10869							2016-02-04	09:00:00.000

10870							2016-02-04	12:00:00.000
10872							2016-02-05	06:00:00.000
10874							2016-02-06	14:00:00.000
10899							2016-02-20	09:00:00.000
10922							2016-03-03	02:00:00.000
10954							2016-03-17	16:00:00.000
11043							2016-04-22	17:00:00.000
	
(42	row(s)	affected)

Hint
The	EmployeeID	is	an	integer	field,	and	not	a	string	field.
So,	the	value	“5”	does	not	need	to	be	surrounded	by
single	quotes	in	the	where	clause.

6.																	Suppliers	and	ContactTitles
In	the	Suppliers	table,	show	the	SupplierID,
ContactName,	and	ContactTitle	for	those	Suppliers
whose	ContactTitle	is	not	Marketing	Manager.

Expected	Results
SupplierID		ContactName																				ContactTitle

-----------	------------------------------	------------------------------

1											Charlotte	Cooper															Purchasing	Manager
2											Shelley	Burke																		Order	Administrator	3											Regina
Murphy																		Sales	Representative	5											Antonio	del	Valle	Saavedra				
Export	Administrator	6											Mayumi	Ohno																				Marketing
Representative	8											Peter	Wilson																			Sales	Representative	9										
Lars	Peterson																		Sales	Agent
11										Petra	Winkler																		Sales	Manager
12										Martin	Bein																				International	Marketing	Mgr.
13										Sven	Petersen																		Coordinator	Foreign	Markets	14										Elio
Rossi																					Sales	Representative	16										Cheryl	Saylor																	
Regional	Account	Rep.
17										Michael	Björn																		Sales	Representative	18										Guylène
Nodier																	Sales	Manager
19										Robb	Merchant																		Wholesale	Account	Agent	20										Chandra
Leka																			Owner
21										Niels	Petersen																	Sales	Manager
22										Dirk	Luchte																				Accounting	Manager
23										Anne	Heikkonen																	Product	Manager
24										Wendy	Mackenzie																Sales	Representative	26										Giovanni
Giudici															Order	Administrator	27										Marie	Delamare																	Sales
Manager
28										Eliane	Noz																					Sales	Representative	29										Chantal
Goulet																	Accounting	Manager
	
(24	row(s)	affected)

Hint
To	learn	how	to	do	the	“not”,	you	can	search	online	for
SQL	comparison	operators.

7.																	Products	with	“queso”	in	ProductName
In	the	products	table,	we’d	like	to	see	the	ProductID	and
ProductName	for	those	products	where	the	ProductName
includes	the	string	“queso”.

Expected	Results
ProductID			ProductName
-----------	--
11										Queso	Cabrales
12										Queso	Manchego	La	Pastora
	
(2	row(s)	affected)
	
	

Hint
In	an	earlierproblem,	we	were	looking	for	exact	matches
— where	our	filter	matched	the	value	in	the	field	exactly.
Here,	we’re	looking	for	rows	where	the	ProductName
field	has	the	value	“queso”	somewhere	in	it.
Use	the	“like”	operator,	with	wildcards,	in	the	answer.
Feel	free	to	do	some	research	online	to	find	examples.

8.																	Orders	shipping	to	France	or	Belgium
Looking	at	the	Orders	table,	there’s	a	field	called
ShipCountry.	Write	a	query	that	shows	the	OrderID,
CustomerID,	and	ShipCountry	for	the	orders	where	the
ShipCountry	is	either	France	or	Belgium.

Expected	Results
OrderID					CustomerID	ShipCountry	-----------	----------	---------------
10248							VINET						France	10251							VICTE						France	10252							SUPRD					
Belgium	10265							BLONP						France	10274							VINET						France	10295						
VINET						France	10297							BLONP						France	10302							SUPRD						Belgium
10311							DUMON						France	10331							BONAP						France	10334						
VICTE						France	10340							BONAP						France	10350							LAMAI						France
10358							LAMAI						France	...	(skipping	some	rows)
	
10923							LAMAI						France	10927							LACOR						France	10930						
SUPRD						Belgium	10932							BONAP						France	10940							BONAP						France
10964							SPECD						France	10971							FRANR						France	10972						
LACOR						France	10973							LACOR						France	10978							MAISD						Belgium
11004							MAISD						Belgium	11035							SUPRD						Belgium	11038						
SUPRD						Belgium	11043							SPECD						France	11051							LAMAI						France
11076							BONAP						France	(96	row(s)	affected)

Hint
In	the	where	clause,	instead	of	combining	the	filters	with
an	“and”	use	the	“or”.

9.																	Orders	shipping	to	any	country	in	Latin
America
Now,	instead	of	just	wanting	to	return	all	the	orders	from
France	of	Belgium,	we	want	to	show	all	the	orders	from
any	Latin	American	country.	But	we	don’t	have	a	list	of
Latin	American	countries	in	a	table	in	the	Northwind
database.	So,	we’re	going	to	just	use	this	list	of	Latin
American	countries	that	happen	to	be	in	the	Orders	table:
Brazil	Mexico	Argentina	Venezuela	It	doesn’t	make
sense	to	use	multiple	Or	statements	anymore,	it	would	get
too	convoluted.	Use	the	In	statement.

Expected	Results
OrderID					CustomerID	ShipCountry	-----------	----------	---------------
10250							HANAR						Brazil	10253							HANAR						Brazil	10256						
WELLI						Brazil	10257							HILAA						Venezuela	10259							CENTC					
Mexico	10261							QUEDE						Brazil	10268							GROSR						Venezuela
10276							TORTU						Mexico	10283							LILAS						Venezuela	10287						
RICAR						Brazil	10997							LILAS						Venezuela	...	(skipping	some	rows)
	
11014							LINOD						Venezuela	11019							RANCH						Argentina	11022						
HANAR						Brazil	11039							LINOD						Venezuela	11042							COMMI					
Brazil	11049							GOURL						Brazil	11052							HANAR						Brazil	11054						
CACTU						Argentina	11055							HILAA						Venezuela	11059							RICAR					
Brazil	11065							LILAS						Venezuela	11068							QUEEN						Brazil	11069						
TORTU						Mexico	11071							LILAS						Venezuela	11073							PERIC					
Mexico	(173	row(s)	affected)
	

Hint
Here’s	an	example	of	the	previous	questions,	about
orders	shipping	to	France	or	Belgium,	done	as	an	In
statement	instead	of	using	multiple	Where	clauses.
Select
				OrderID
				,CustomerID
				,OrderDate
				,ShipCountry
From	Orders
where
				ShipCountry	in	('France','Belgium')
	

10.													Employees,	in	order	of	age
For	all	the	employees	in	the	Employees	table,	show	the
FirstName,	LastName,	Title,	and	BirthDate.	Order	the
results	by	BirthDate,	so	we	have	the	oldest	employees
first.

Expected	Results
FirstName		LastName													Title																										BirthDate	----------	------------
--------	------------------------------	-----------------------
Margaret			Peacock														Sales	Representative											1955-09-19
00:00:00.000
Nancy						Davolio														Sales	Representative											1966-12-08	00:00:00.000
Andrew					Fuller															Vice	President,	Sales										1970-02-19	00:00:00.000
Steven					Buchanan													Sales	Manager																		1973-03-04	00:00:00.000
Laura						Callahan													Inside	Sales	Coordinator							1976-01-09	00:00:00.000
Robert					King																	Sales	Representative											1978-05-29	00:00:00.000
Michael				Suyama															Sales	Representative											1981-07-02
00:00:00.000
Janet						Leverling												Sales	Representative											1981-08-30	00:00:00.000
Anne							Dodsworth												Sales	Representative											1984-01-27
00:00:00.000
	
(9	row(s)	affected)

Hint
You’ll	need	to	use	the	Order	by	clause	here	for	sorting
the	results.	Look	online	for	examples.

11.														Showing	only	the	Date	with	a	DateTime
field
In	the	output	of	the	query	above,	showing	the	Employees
in	order	of	BirthDate,	we	see	the	time	of	the	BirthDate
field,	which	we	don’t	want.	Show	only	the	date	portion	of
the	BirthDate	field.

Expected	Results
FirstName		LastName													Title																										DateOnlyBirthDate	----------	-
-------------------	------------------------------	-----------------
Margaret			Peacock														Sales	Representative											1955-09-19
Nancy						Davolio														Sales	Representative											1966-12-08
Andrew					Fuller															Vice	President,	Sales										1970-02-19
Steven					Buchanan													Sales	Manager																		1973-03-04
Laura						Callahan													Inside	Sales	Coordinator							1976-01-09
Robert					King																	Sales	Representative											1978-05-29
Michael				Suyama															Sales	Representative											1981-07-02
Janet						Leverling												Sales	Representative											1981-08-30
Anne							Dodsworth												Sales	Representative											1984-01-27
	
(9	row(s)	affected)

Hint
Use	the	Convert	function	to	convert	the	BirthDate
column	(originally	a	DateTime	column)	to	a	Date
column.

12.													Employees	full	name
Show	the	FirstName	and	LastName	columns	from	the
Employees	table,	and	then	create	a	new	column	called
FullName,	showing	FirstName	and	LastName	joined
together	in	one	column,	with	a	space	in-between.

Expected	Results
FirstName		LastName													FullName
----------	--------------------	-------------------------------
Nancy						Davolio														Nancy	Davolio
Andrew					Fuller															Andrew	Fuller
Janet						Leverling												Janet	Leverling
Margaret			Peacock														Margaret	Peacock
Steven					Buchanan													Steven	Buchanan
Michael				Suyama															Michael	Suyama
Robert					King																	Robert	King
Laura						Callahan													Laura	Callahan
Anne							Dodsworth												Anne	Dodsworth
	
(9	row(s)	affected)
	

Hint
Joining	two	fields	like	this	is	called	concatenation.	Look
online	for	examples	of	string	concatenation	with	SQL
Server.

13.													OrderDetails	amount	per	line	item
In	the	OrderDetails	table,	we	have	the	fields	UnitPrice
and	Quantity.	Create	a	new	field,	TotalPrice,	that
multiplies	these	two	together.	We’ll	ignore	the	Discount
field	for	now.
In	addition,	show	the	OrderID,	ProductID,	UnitPrice,	and
Quantity.	Order	by	OrderID	and	ProductID.

Expected	Results
OrderID					ProductID			UnitPrice													Quantity	TotalPrice	-----------	-----------
---------------------	--------	---------------------
10248							11										14.00																	12							168.00
10248							42										9.80																		10							98.00
10248							72										34.80																	5								174.00
10249							14										18.60																	9								167.40
10249							51										42.40																	40							1696.00
10250							41										7.70																		10							77.00
10250							51										42.40																	35							1484.00
10250							65										16.80																	15							252.00
10251							22										16.80																	6								100.80
10251							57										15.60																	15							234.00
10251							65										16.80																	20							336.00
	
...	(skipping	some	rows)
	
11077							13										6.00																		4								24.00
11077							14										23.25																	1								23.25
11077							16										17.45																	2								34.90
11077							20										81.00																	1								81.00
11077							23										9.00																		2								18.00
11077							32										32.00																	1								32.00
11077							39										18.00																	2								36.00
11077							41										9.65																		3								28.95
11077							46										12.00																	3								36.00
11077							52										7.00																		2								14.00
11077							55										24.00																	2								48.00
11077							60										34.00																	2								68.00
11077							64										33.25																	2								66.50
11077							66										17.00																	1								17.00
11077							73										15.00																	2								30.00
11077							75										7.75																		4								31.00
11077							77										13.00																	2								26.00
	
(2155	row(s)	affected)

	

Hint
In	this	computed	column,	you	need	to	use	the	arithmetic
operator	for	multiplication.

14.													How	many	customers?
How	many	customers	do	we	have	in	the	Customers	table?
Show	one	value	only,	and	don’t	rely	on	getting	the
recordcount	at	the	end	of	a	resultset.

Expected	Results
TotalCustomers

91
	
(1	row(s)	affected)

Hint
In	order	to	get	the	total	number	of	customers,	we	need	to
use	what’s	called	an	aggregate	function.	Look	online	for
an	aggregate	function	that	would	work	for	this	problem.

15.													When	was	the	first	order?
Show	the	date	of	the	first	order	ever	made	in	the	Orders
table.

Expected	Results
FirstOrder

2014-07-04	08:00:00.000
	
(1	row(s)	affected)

Hint
There’s	a	aggregate	function	called	Min	that	you	need	to
use	for	this	problem.

16.													Countries	where	there	are	customers
Show	a	list	of	countries	where	the	Northwind	company
has	customers.

Expected	Results
Country

Argentina
Austria
Belgium
Brazil
Canada
Denmark
Finland
France
Germany
Ireland
Italy
Mexico
Norway
Poland
Portugal
Spain
Sweden
Switzerland
UK
USA
Venezuela
	
(21	row(s)	affected)

Hint
You’ll	want	to	use	the	Group	By	clause	for	this	query.

17.													Contact	titles	for	customers
Show	a	list	of	all	the	different	values	in	the	Customers
table	for	ContactTitles.	Also	include	a	count	for	each
ContactTitle.
This	is	similar	in	concept	to	the	previous	question
“Countries	where	there	are	customers”,	except	we	now
want	a	count	for	each	ContactTitle.

Expected	Results
ContactTitle																			TotalContactTitle
------------------------------	-----------------
Owner																										17
Sales	Representative											17
Marketing	Manager														12
Sales	Manager																		11
Accounting	Manager													10
Sales	Associate																7
Marketing	Assistant												6
Sales	Agent																				5
Assistant	Sales	Agent										2
Order	Administrator												2
Assistant	Sales	Representative	1
Owner/Marketing	Assistant						1
	
(12	row(s)	affected)

Hint
The	answer	for	this	problem	builds	on	multiple	concepts
introduced	in	previous	problem,	such	as	grouping,
aggregate	functions,	and	aliases.

18.													Products	with	associated	supplier	names
We’d	like	to	show,	for	each	product,	the	associated
Supplier.	Show	the	ProductID,	ProductName,	and	the
CompanyName	of	the	Supplier.	Sort	by	ProductID.
This	question	will	introduce	what	may	be	a	new	concept,
the	Join	clause	in	SQL.	The	Join	clause	is	used	to	join
two	or	more	relational	database	tables	together	in	a
logical	way.
Here’s	a	data	model	of	the	relationship	between	Products
and	Suppliers.

Expected	Results
ProductID			ProductName																														Supplier

-----------	--	------------------------------

1											Chai																																					Exotic	Liquids
2											Chang																																				Exotic	Liquids
3											Aniseed	Syrup																												Exotic	Liquids
4											Chef	Anton's	Cajun	Seasoning													New	Orleans	Cajun	Delights
5											Chef	Anton's	Gumbo	Mix																			New	Orleans	Cajun	Delights
6											Grandma's	Boysenberry	Spread													Grandma	Kelly's	Homestead
7											Uncle	Bob's	Organic	Dried	Pears										Grandma	Kelly's	Homestead
8											Northwoods	Cranberry	Sauce															Grandma	Kelly's	Homestead
9											Mishi	Kobe	Niku																										Tokyo	Traders
10										Ikura																																				Tokyo	Traders
	
...	(skipping	some	rows)
	
66										Louisiana	Hot	Spiced	Okra																New	Orleans	Cajun	Delights
67										Laughing	Lumberjack	Lager																Bigfoot	Breweries
68										Scottish	Longbreads																						Specialty	Biscuits,	Ltd.
69										Gudbrandsdalsost																									Norske	Meierier
70										Outback	Lager																												Pavlova,	Ltd.
71										Flotemysost																														Norske	Meierier
72										Mozzarella	di	Giovanni																			Formaggi	Fortini	s.r.l.
73										Röd	Kaviar																															Svensk	Sjöföda	AB
74										Longlife	Tofu																												Tokyo	Traders
75										Rhönbräu	Klosterbier																					Plutzer	Lebensmittelgroßmärkte	AG
76										Lakkalikööri																													Karkki	Oy
77										Original	Frankfurter	grüne	Soße										Plutzer	Lebensmittelgroßmärkte
AG
	
(77	row(s)	affected)
	

Hint
Just	as	a	reference,	here’s	an	example	of	what	the	syntax
for	the	Join	looks	like,	using	different	tables	from	the
Northwind	database.	It	will	show	all	the	products,	with
the	associated	CategoryName.
Select
				ProductID
				,ProductName
				,CategoryName
From	Products
				Join	Categories
								on	Products.CategoryID	=	Categories.CategoryID

19.													Orders	and	the	Shipper	that	was	used
We’d	like	to	show	a	list	of	the	Orders	that	were	made,
including	the	Shipper	that	was	used.	Show	the	OrderID,
OrderDate	(date	only),	and	CompanyName	of	the
Shipper,	and	sort	by	OrderID.
In	order	to	not	show	all	the	orders	(there’s	more	than
800),	show	only	those	rows	with	an	OrderID	of	less	than
10300.

Expected	Results
OrderID					OrderDate		Shipper	-----------	----------	------------------------------------

10248							2014-07-04	Federal	Shipping	10249							2014-07-05	Speedy	Express
10250							2014-07-08	United	Package	10251							2014-07-08	Speedy	Express
10252							2014-07-09	United	Package	10253							2014-07-10	United	Package
10254							2014-07-11	United	Package	10255							2014-07-12	Federal	Shipping
10256							2014-07-15	United	Package	10257							2014-07-16	Federal	Shipping
10258							2014-07-17	Speedy	Express	10259							2014-07-18	Federal	Shipping
10260							2014-07-19	Speedy	Express	10261							2014-07-19	United	Package
10262							2014-07-22	Federal	Shipping	10263							2014-07-23	Federal	Shipping
10264							2014-07-24	Federal	Shipping	...	(skipping	some	rows)
	
10284							2014-08-19	Speedy	Express	10285							2014-08-20	United	Package
10286							2014-08-21	Federal	Shipping	10287							2014-08-22	Federal	Shipping
10288							2014-08-23	Speedy	Express	10289							2014-08-26	Federal	Shipping
10290							2014-08-27	Speedy	Express	10291							2014-08-27	United	Package
10292							2014-08-28	United	Package	10293							2014-08-29	Federal	Shipping
10294							2014-08-30	United	Package	10295							2014-09-02	United	Package
10296							2014-09-03	Speedy	Express	10297							2014-09-04	United	Package
10298							2014-09-05	United	Package	10299							2014-09-06	United	Package
(52	row(s)	affected)
	

Hint
First,	create	a	SQL	statement	that	shows	only	the	rows
and	columns	you	need	from	the	Orders	table.
Then,	work	on	adding	the	join	to	the	Shipper	table,	and
the	necessary	field	from	that	table.
This	data	model	should	help	you	visualize	the	join
between	the	Orders	table	and	the	Shippers	table.

Hint
One	thing	to	note	for	this	problem	is	that	when	you	join
two	tables,	the	field	that’s	joined	on	does	not	necessarily
need	to	have	the	same	name.	Usually,	they	do.	However,
in	this	case,	the	ShipVia	field	in	Orders	is	joined	to
ShipperID	in	Shippers.
	
	
	
	
	
	

Congratulations!	You've	completed	the	introductory
problems	Any	questions	or	feedback	on	the	problems,
hints,	or	answers?	I'd	like	to	hear	from	you.	Please	email

me	at	feedback@SQLPracticeProblems.com.
	

mailto:feedback@SQLPracticeProblems.com

Intermediate	Problems

20.												Categories,	and	the	total	products	in	each
category
For	this	problem,	we’d	like	to	see	the	total	number	of
products	in	each	category.	Sort	the	results	by	the	total
number	of	products,	in	descending	order.

Expected	Results
CategoryName				TotalProducts
---------------	-------------
Confections					13
Beverages							12
Condiments						12
Seafood									12
Dairy	Products		10
Grains/Cereals		7
Meat/Poultry				6
Produce									5
	
(8	row(s)	affected)
	

Hint
To	solve	this	problem,	you	need	to	combine	a	join,	and	a
group	by.
A	good	way	to	start	is	by	creating	a	query	that	shows	the
CategoryName	and	all	ProductIDs	associated	with	it,
without	grouping.	Then,	add	the	Group	by

21.													Total	customers	per	country/city
In	the	Customers	table,	show	the	total	number	of
customers	per	Country	and	City.

Expected	Results
Country									City												TotalCustomer	---------------	---------------	-------------
UK														London										6
Mexico										México	D.F.					5
Brazil										Sao	Paulo							4
Brazil										Rio	de	Janeiro		3
Spain											Madrid										3
Argentina							Buenos	Aires				3
France										Paris											2
USA													Portland								2
France										Nantes										2
Portugal								Lisboa										2
Finland									Oulu												1
Italy											Reggio	Emilia			1
France										Reims											1
Brazil										Resende									1
	
...	(skipping	some	rows)
	
Canada										Montréal								1
Germany									München									1
Germany									Münster									1
Germany									Aachen										1
USA													Albuquerque					1
USA													Anchorage							1
Denmark									Århus											1
Spain											Barcelona							1
Venezuela							Barquisimeto				1
Italy											Bergamo									1
Germany									Berlin										1
Switzerland					Bern												1
USA													Boise											1
Sweden										Bräcke										1
Germany									Brandenburg					1
Belgium									Bruxelles							1
	
(69	row(s)	affected)

Hint
Just	as	you	can	have	multiple	fields	in	a	Select	clause,
you	can	also	have	multiple	fields	in	a	Group	By	clause.

22.												Products	that	need	reordering
What	products	do	we	have	in	our	inventory	that	should	be
reordered?	For	now,	just	use	the	fields	UnitsInStock	and
ReorderLevel,	where	UnitsInStock	is	less	than	the
ReorderLevel,	ignoring	the	fields	UnitsOnOrder	and
Discontinued.
Order	the	results	by	ProductID.

Expected	Results
ProductID			ProductName																														UnitsInStock	ReorderLevel	---------
--	--	------------	------------
2											Chang																																				17											25
3											Aniseed	Syrup																												13											25
11										Queso	Cabrales																											22											30
21										Sir	Rodney's	Scones																						3												5
30										Nord-Ost	Matjeshering																				10											15
31										Gorgonzola	Telino																								0												20
32										Mascarpone	Fabioli																							9												25
37										Gravad	lax																															11											25
43										Ipoh	Coffee																														17											25
45										Rogede	sild																														5												15
48										Chocolade																																15											25
49										Maxilaku																																	10											15
56										Gnocchi	di	nonna	Alice																			21											30
64										Wimmers	gute	Semmelknödel																22											30
66										Louisiana	Hot	Spiced	Okra																4												20
68										Scottish	Longbreads																						6												15
70										Outback	Lager																												15											30
74										Longlife	Tofu																												4												5
	
(18	row(s)	affected)

Hint
We	want	to	show	all	fields	where	the	UnitsInStock	is	less
than	the	ReorderLevel.	So	in	the	Where	clause,	use	the
following:
				UnitsInStock	<	ReorderLevel

23.												Products	that	need	reordering,	continued
Now	we	need	to	incorporate	these	fields—UnitsInStock,
UnitsOnOrder,	ReorderLevel,	Discontinued—into	our
calculation.	We’ll	define	“products	that	need	reordering”
with	the	following:

UnitsInStock	plus	UnitsOnOrder	are	less	than	or
equal	to	ReorderLevel
The	Discontinued	flag	is	false	(0).

Expected	Results
ProductID			ProductName													UnitsInStock	UnitsOnOrder	ReorderLevel
Discontinued
-----------	-----------------------	------------	------------	------------	------------
30										Nord-Ost	Matjeshering			10											0												15											0
70										Outback	Lager											15											10											30											0
	
(2	row(s)	affected)
	

Hint
For	the	first	part	of	the	Where	clause,	you	should	have
something	like	this:
				UnitsInStock	+	UnitsOnOrder	<=	ReorderLevel

24.											Customer	list	by	region
A	salesperson	for	Northwind	is	going	on	a	business	trip
to	visit	customers,	and	would	like	to	see	a	list	of	all
customers,	sorted	by	region,	alphabetically.
However,	he	wants	the	customers	with	no	region	(null	in
the	Region	field)	to	be	at	the	end,	instead	of	at	the	top,
where	you’d	normally	find	the	null	values.	Within	the
same	region,	companies	should	be	sorted	by	CustomerID.

Expected	Results
CustomerID	CompanyName																														Region	----------	--------------------
--------------------	---------------
OLDWO						Old	World	Delicatessen																			AK
BOTTM						Bottom-Dollar	Markets																				BC
LAUGB						Laughing	Bacchus	Wine	Cellars												BC
LETSS						Let's	Stop	N	Shop																								CA	HUNGO						Hungry	Owl	All-
Night	Grocers													Co.	Cork	GROSR						GROSELLA-
Restaurante																					DF
SAVEA						Save-a-lot	Markets																							ID
ISLAT						Island	Trading																											Isle	of	Wight	LILAS						LILA-
Supermercado																								Lara	THECR						The	Cracker	Box																									
MT
RATTC						Rattlesnake	Canyon	Grocery															NM
	
...	(skipping	some	rows)
	
SANTG						Santé	Gourmet																												NULL
SEVES						Seven	Seas	Imports																							NULL
SIMOB						Simons	bistro																												NULL
SPECD						Spécialités	du	monde																					NULL
SUPRD						Suprêmes	délices																									NULL
TOMSP						Toms	Spezialitäten																							NULL
TORTU						Tortuga	Restaurante																						NULL
VAFFE						Vaffeljernet																													NULL
VICTE						Victuailles	en	stock																					NULL
VINET						Vins	et	alcools	Chevalier																NULL
WANDK						Die	Wandernde	Kuh																								NULL
WARTH						Wartian	Herkku																											NULL
WILMK						Wilman	Kala																														NULL
WOLZA						Wolski		Zajazd																											NULL
	
(91	row(s)	affected)
	

Hint
You	won’t	be	able	to	sort	directly	on	the	Region	field
here.	You’ll	need	to	sort	on	the	Region	field,	and	also	on
a	computed	field	that	you	create,	which	will	give	you	a
secondary	sort	for	when	Region	is	null	First,	without
ordering,	create	a	computed	field	that	has	a	value	which
will	sort	the	way	you	want.	In	this	case,	you	can	create	a
field	with	the	Case	statement,	which	allows	you	do	to
if/then	logic.	You	want	a	field	that	is	1	when	Region	is
null.
Take	a	look	at	the	Examples	section	in	the	SQL	Server
documentation	for	Case	(https://msdn.microsoft.com/en-
us/library/ms181765.aspx#examples).
Note	that	when	filtering	for	null	values,	you	can't	use
“FieldName	=	Null”.	You	must	use	“FieldName	is	null”.

https://msdn.microsoft.com/en-us/library/ms181765.aspx#examples

Hint
You	should	have	something	like	this:	Select	CustomerID
				,CompanyName	,Region	,Case		
								when	Region	is	null	then	1
								else	0
				End	From	Customers	When	the	Region	contains	a	null,	you	will	have	a	1	in
the	final	column.	Now,	just	add	the	fields	for	the	Order	By	clause,	in	the	right
order.

25.												High	freight	charges
Some	of	the	countries	we	ship	to	have	very	high	freight
charges.	We'd	like	to	investigate	some	more	shipping
options	for	our	customers,	to	be	able	to	offer	them	lower
freight	charges.	Return	the	three	ship	countries	with	the
highest	average	freight	overall,	in	descending	order	by
average	freight.
	

Expected	Results
ShipCountry					AverageFreight
---------------	---------------------
Austria									184.7875
Ireland									145.0126
USA													112.8794
	
(3	row(s)	affected)

Hint
We'll	be	using	the	Orders	table,	and	using	the	Freight	and
ShipCountry	fields.

Hint
You'll	want	to	group	by	ShipCountry,	and	use	the	Avg
function.	Don't	worry	about	showing	only	the	top	3	rows
until	you	have	the	grouping	and	average	freight	set	up.

Hint
You	should	have	something	like	this:
Select	
				ShipCountry
				,AverageFreight	=	avg(freight)
From	Orders
Group	By	ShipCountry
Order	By	AverageFreight	desc;
	
Now	you	just	need	to	show	just	the	top	3	rows.

26.												High	freight	charges	-	2015
We're	continuing	on	the	question	above	on	high	freight
charges.	Now,	instead	of	using	all	the	orders	we	have,	we
only	want	to	see	orders	from	the	year	2015.

Expected	result
ShipCountry					AverageFreight
---------------	---------------------
Austria									178.3642
Switzerland					117.1775
France										113.991
	
(3	row(s)	affected)

Hint
You	need	to	add	a	Where	clause	to	the	query	from	the
previous	problem.	The	field	to	filter	on	is	OrderDate.

Hint
When	filtering	on	dates,	you	need	to	know	whether	the
date	field	is	a	DateTime,	or	a	Date	field.	Is	OrderDate	a
Datetime	or	a	Date	field?

27.												High	freight	charges	with	between
Another	(incorrect)	answer	to	the	problem	above	is	this:
Select	Top	3
				ShipCountry	,AverageFreight	=	avg(freight)	From	Orders	Where	OrderDate
between	'1/1/2015'	and	'12/31/2015'
Group	By	ShipCountry	Order	By	AverageFreight	desc;	Notice	when	you	run
this,	it	gives	Sweden	as	the	ShipCountry	with	the	third	highest	freight	charges.
However,	this	is	wrong	-	it	should	be	France.
What	is	the	OrderID	of	the	order	that	the	(incorrect)
answer	above	is	missing?

Expected	Result
(no	expected	results	this	time	-	we’re	looking	for	a
specific	OrderID)

Hint
The	Between	statement	is	inclusive.	Why	isn’t	it	showing
the	orders	made	on	December	31,	2015?

Hint
Run	this	query,	and	look	at	the	rows	around	December
31,	2015.	What	do	you	notice?	Look	specifically	at	the
Freight	field.
select	*	from	orders	order	by	OrderDate

28.											High	freight	charges	-	last	year
We're	continuing	to	work	on	high	freight	charges.	We
now	want	to	get	the	three	ship	countries	with	the	highest
average	freight	charges.	But	instead	of	filtering	for	a
particular	year,	we	want	to	use	the	last	12	months	of
order	data,	using	as	the	end	date	the	last	OrderDate	in
Orders.

Expected	Results
ShipCountry					AverageFreight
---------------	---------------------
Ireland									200.21
Austria									186.4596
USA													119.3032
	
(3	row(s)	affected)

Hint
First,	get	the	last	OrderDate	in	Orders.	Write	a	simple
select	statement	to	get	the	highest	value	in	the	OrderDate
field	using	the	Max	aggregate	function.

Hint
You	should	have	something	like	this:	Select
Max(OrderDate)	from	Orders	Now	you	need	to	get	the
date	1	year	before	the	last	order	date.	Create	a	simple
select	statement	that	subtracts	1	year	from	the	last	order
date	You	can	use	the	DateAdd	function	for	this.	Note	that
within	DateAdd,	you	can	use	the	subquery	you	created
above.	Look	online	for	some	examples	if	you	need	to.

Hint
You	should	have	something	like	this:
Select	Dateadd(yy,	-1,	(Select	Max(OrderDate)	from	Orders))

Now	you	just	need	to	put	it	in	the	where	clause.
	

29.												Inventory	list
We're	doing	inventory,	and	need	to	show	information	like
the	below,	for	all	orders.	Sort	by	OrderID	and	Product
ID.

Expected	Results
EmployeeID		LastName													OrderID					ProductName																													
Quantity	-----------	--------------------	-----------	--	-

5											Buchanan													10248							Queso	Cabrales																											12
5											Buchanan													10248							Singaporean	Hokkien	Fried	Mee												10
5											Buchanan													10248							Mozzarella	di	Giovanni																			5
6											Suyama															10249							Tofu																																					9
6											Suyama															10249							Manjimup	Dried	Apples																				40
4											Peacock														10250							Jack's	New	England	Clam	Chowder										10
4											Peacock														10250							Manjimup	Dried	Apples																				35
4											Peacock														10250							Louisiana	Fiery	Hot	Pepper	Sauce									15
3											Leverling												10251							Gustaf's	Knäckebröd																						6
3											Leverling												10251							Ravioli	Angelo																											15
3											Leverling												10251							Louisiana	Fiery	Hot	Pepper	Sauce									20
4											Peacock														10252							Sir	Rodney's	Marmalade																			40
4											Peacock														10252							Geitost																																		25
4											Peacock														10252							Camembert	Pierrot																								40
3											Leverling												10253							Gorgonzola	Telino																								20
3											Leverling												10253							Chartreuse	verte																									42
3											Leverling												10253							Maxilaku																																	40
…
(total	2155	rows)

Hint
You'll	need	to	do	a	join	between	4	tables,	displaying	only
those	fields	that	are	necessary.

30.												Customers	with	no	orders
There	are	some	customers	who	have	never	actually
placed	an	order.	Show	these	customers.

Expected	Results
Customers_CustomerID	Orders_CustomerID
--------------------	-----------------
FISSA																NULL
PARIS																NULL
	
(2	row(s)	affected)

Hint
One	way	of	doing	this	is	to	use	a	left	join,	also	known	as
a	left	outer	join.

Hint
Select	Customers_CustomerID	=	Customers.CustomerID
				,Orders_CustomerID	=	Orders.CustomerID
From	Customers	left	join	Orders	on	Orders.CustomerID	=
Customers.CustomerID
	
This	is	a	good	start.	It	shows	all	records	from	the
Customers	table,	and	the	matching	records	from	the
Orders	table.	However,	we	only	want	those	records	where
the	CustomerID	in	Orders	is	null.	You	still	need	a	filter

31.													Customers	with	no	orders	for	EmployeeID
4
One	employee	(Margaret	Peacock,	EmployeeID	4)	has
placed	the	most	orders.	However,	there	are	some
customers	who've	never	placed	an	order	with	her.	Show
only	those	customers	who	have	never	placed	an	order
with	her.

Expected	Result
CustomerID	CustomerID
----------	----------
SEVES						NULL
THEBI						NULL
LAZYK						NULL
GROSR						NULL
PARIS						NULL
FISSA						NULL
SPECD						NULL
LAUGB						NULL
PRINI						NULL
VINET						NULL
FRANR						NULL
CONSH						NULL
NORTS						NULL
PERIC						NULL
DUMON						NULL
SANTG						NULL
	
(16	row(s)	affected)

Hint
Building	on	the	previous	problem,	you	might	think	you
need	to	do	something	like	this:	Select
Customers.CustomerID
				,Orders.CustomerID
From	Customers	left	join	Orders	on	Orders.CustomerID	=
Customers.CustomerID
Where	Orders.CustomerID	is	null	and	Orders.EmployeeID	=	4
	
…adding	this	filter	in	the	where	clause:	and
Orders.EmployeeID	=	4
However,	this	returns	no	records.
Note	that	with	outer	joins,	the	filters	on	the	where	clause
are	applied	after	the	join.
	
	
	

Congratulations!	You've	completed	the	intermediate
problems	Any	questions	or	feedback	on	the	problems,
hints,	or	answers?	I'd	like	to	hear	from	you.	Please	email

me	at	feedback@SQLPracticeProblems.com.
	

mailto:feedback@SQLPracticeProblems.com

	

Advanced	Problems

32.												High-value	customers
We	want	to	send	all	of	our	high-value	customers	a	special
VIP	gift.	We're	defining	high-value	customers	as	those
who've	made	at	least	1	order	with	a	total	value	(not
including	the	discount)	equal	to	$10,000	or	more.	We
only	want	to	consider	orders	made	in	the	year	2016.

Expected	Result
CustomerID	CompanyName																														OrderID					TotalOrderAmount
----------	--	-----------	---------------------
QUICK						QUICK-Stop																															10865							17250.00
SAVEA						Save-a-lot	Markets																							11030							16321.90
HANAR						Hanari	Carnes																												10981							15810.00
KOENE						Königlich	Essen																										10817							11490.70
RATTC						Rattlesnake	Canyon	Grocery															10889							11380.00
HUNGO						Hungry	Owl	All-Night	Grocers													10897							10835.24
	
(6	row(s)	affected)
	

Hint
First,	let's	get	the	necessary	fields	for	all	orders	made	in
the	year	2016.	Don't	bother	grouping	yet,	just	work	on
the	Where	clause.	You'll	need	the	CustomerID,
CompanyName	from	Customers;	OrderID	from	Orders;
and	Quantity	and	unit	price	from	OrderDetails.	Order	by
the	total	amount	of	the	order,	in	descending	order.

Hint
You	should	have	something	like	this:	Select
Customers.CustomerID
				,Customers.CompanyName	,Orders.OrderID
				,Amount	=	Quantity	*	UnitPrice	From	Customers	join	Orders	on
Orders.CustomerID	=	Customers.CustomerID
				join	OrderDetails	on	Orders.OrderID	=	OrderDetails.OrderID
Where	OrderDate	>=	'20160101'
				and	OrderDate		<	'20170101'
	
This	gives	you	the	total	amount	for	each	Order	Detail
item	in	2016	orders,	at	the	Order	Detail	level.	Now,
which	fields	do	you	need	to	group	on,	and	which	need	to
be	summed?

Hint
Select	Customers.CustomerID
				,Customers.CompanyName	,Orders.OrderID
				,TotalOrderAmount	=	sum(Quantity	*	UnitPrice)	From	Customers	Join
Orders	on	Orders.CustomerID	=	Customers.CustomerID
				Join	OrderDetails	on	Orders.OrderID	=	OrderDetails.OrderID
Where	OrderDate	>=	'20160101'
				and	OrderDate		<	'20170101'
Group	By	Customers.CustomerID
				,Customers.CompanyName	,Orders.OrderID
	
The	fields	at	the	Customer	and	Order	level	need	to	be
grouped	by,	and	the	TotalOrderAmount	needs	to	be
summed.
How	would	you	filter	on	the	sum,	in	order	to	get	orders
of	$10,000	or	more?	Can	you	put	it	straight	into	the
where	clause?

33.												High-value	customers	-	total	orders
The	manager	has	changed	his	mind.	Instead	of	requiring
that	customers	have	at	least	one	individual	orders	totaling
$10,000	or	more,	he	wants	to	define	high-value
customers	as	those	who	have	orders	totaling	$15,000	or
more	in	2016.	How	would	you	change	the	answer	to	the
problem	above?

Expected	Result
CustomerID	CompanyName																														TotalOrderAmount	----------	-----
-----------------------------------	---------------------
SAVEA						Save-a-lot	Markets																							42806.25
ERNSH						Ernst	Handel																													42598.90
QUICK						QUICK-Stop																															40526.99
HANAR						Hanari	Carnes																												24238.05
HUNGO						Hungry	Owl	All-Night	Grocers													22796.34
RATTC						Rattlesnake	Canyon	Grocery															21725.60
KOENE						Königlich	Essen																										20204.95
FOLKO						Folk	och	fä	HB																											15973.85
WHITC						White	Clover	Markets																					15278.90
	
(9	row(s)	affected)
	

Hint
This	query	is	almost	identical	to	the	one	above,	but
there's	just	a	few	lines	you	need	to	delete	or	comment
out,	to	group	at	a	different	level.

34.											High-value	customers	-	with	discount
Change	the	above	query	to	use	the	discount	when
calculating	high-value	customers.	Order	by	the	total
amount	which	includes	the	discount.

Expected	Result
CustomerID	CompanyName																				TotalsWithoutDiscount
TotalsWithDiscount	----------	------------------------------	---------------------	---------

ERNSH						Ernst	Handel																			42598.90														41210.6500244141
QUICK						QUICK-Stop																					40526.99														37217.3150024414
SAVEA						Save-a-lot	Markets													42806.25														36310.1097793579
HANAR						Hanari	Carnes																		24238.05														23821.1999893188
RATTC						Rattlesnake	Canyon	Grocery					21725.60													
21238.2704410553
HUNGO						Hungry	Owl	All-Night	Grocers			22796.34													
20402.119934082
KOENE						Königlich	Essen																20204.95														19582.7739868164
WHITC						White	Clover	Markets											15278.90														15278.8999862671
FOLKO						Folk	och	fä	HB																	15973.85														13644.0674972534
SUPRD						Suprêmes	délices															11862.50														11644.5999984741
BOTTM						Bottom-Dollar	Markets										12227.40														11338.5500488281
	
(11	row(s)	affected)

Hint
To	start	out,	just	use	the	OrderDetails	table.	You'll	need
to	figure	out	how	the	Discount	field	is	structured.

Hint
You	should	have	something	like	this:	Select	OrderID
				,ProductID
				,UnitPrice	,Quantity	,Discount	,TotalWithDisccount	=	UnitPrice	*	Quantity	*
(1-	Discount)	from	OrderDetails	Note	that	Discount	is	applied	as	a	percentage.
So,	if	there's	a	0.15	in	the	discount	field,	you	need	to	multiply	the	UnitPrice	*
Quantity	by	.85	(1.00	-	.15).	You	need	parenthesis	around	(1	-	Discount)	to	make
sure	that	calculation	is	done	first.

35.												Month-end	orders
At	the	end	of	the	month,	salespeople	are	likely	to	try
much	harder	to	get	orders,	to	meet	their	month-end
quotas.	Show	all	orders	made	on	the	last	day	of	the
month.	Order	by	EmployeeID	and	OrderID

Expected	Result
EmployeeID		OrderID					OrderDate	-----------	-----------	-----------------------
1											10461							2015-02-28	00:00:00.000
1											10616							2015-07-31	00:00:00.000
2											10583							2015-06-30	00:00:00.000
2											10686							2015-09-30	00:00:00.000
2											10989							2016-03-31	00:00:00.000
2											11060							2016-04-30	00:00:00.000
3											10432							2015-01-31	00:00:00.000
3											10806							2015-12-31	00:00:00.000
3											10988							2016-03-31	00:00:00.000
3											11063							2016-04-30	00:00:00.000
4											10343							2014-10-31	00:00:00.000
4											10522							2015-04-30	00:00:00.000
4											10584							2015-06-30	00:00:00.000
4											10617							2015-07-31	00:00:00.000
4											10725							2015-10-31	00:00:00.000
4											10807							2015-12-31	00:00:00.000
4											11061							2016-04-30	00:00:00.000
4											11062							2016-04-30	00:00:00.000
5											10269							2014-07-31	00:00:00.000
6											10317							2014-09-30	00:00:00.000
7											10490							2015-03-31	00:00:00.000
8											10399							2014-12-31	00:00:00.000
8											10460							2015-02-28	00:00:00.000
8											10491							2015-03-31	00:00:00.000
8											10987							2016-03-31	00:00:00.000
9											10687							2015-09-30	00:00:00.000
	
(26	row(s)	affected)

Hint
You	can	work	on	calculating	this	yourself,	with	a
combination	of	date	functions	such	as	DateAdd	and
DateDiff.	But	feel	free	to	shortcut	the	process	by	doing
some	research	online.

36.												Orders	with	many	line	items
The	Northwind	mobile	app	developers	are	testing	an	app
that	customers	will	use	to	show	orders.	In	order	to	make
sure	that	even	the	largest	orders	will	show	up	correctly	on
the	app,	they'd	like	some	samples	of	orders	that	have	lots
of	individual	line	items.	Show	the	10	orders	with	the
most	line	items,	in	order	of	total	line	items.

Expected	Result
OrderID					TotalOrderDetails
-----------	-----------------
11077							25
10979							6
10657							6
10847							6
10845							5
10836							5
10714							5
10670							5
10691							5
10698							5
	
(10	row(s)	affected)
	

Hint
Using	Orders	and	OrderDetails,	you'll	use	Group	by	and
count()	functionality.

37.												Orders	-	random	assortment
The	Northwind	mobile	app	developers	would	now	like	to
just	get	a	random	assortment	of	orders	for	beta	testing	on
their	app.	Show	a	random	set	of	2%	of	all	orders.

Expected	Result
(note	-	your	results	will	be	different,	because	we’re
returning	a	random	set)
OrderID

11034
10400
10948
10931
10942
10604
10350
10499
10927
10896
10774
10932
10592
10706
10479
10782
10898
	
(17	row(s)	affected)

Hint
Note	that	in	the	below	SQL,	the	RandomValue	field
returns	the	same	random	value	for	each	row.	Do	some
research	online	to	figure	out	how	to	get	a	new	random
value	for	each	row.
Select
				OrderID
				,	RandomValue	=	Rand()
From	Orders

38.												Orders	-	accidental	double-entry
Janet	Leverling,	one	of	the	salespeople,	has	come	to	you
with	a	request.	She	thinks	that	she	accidentally	double-
entered	a	line	item	on	an	order,	with	a	different
ProductID,	but	the	same	quantity.	She	remembers	that	the
quantity	was	60	or	more.	Show	all	the	OrderIDs	with	line
items	that	match	this,	in	order	of	OrderID.

Expected	Result
OrderID

10263
10263
10990
10658
11030
	
(5	row(s)	affected)
	

Hint
You	might	start	out	with	something	like	this:	Select
OrderID
				,ProductID
				,Quantity	From	OrderDetails	Where	Quantity	>=	60
	
However,	this	will	only	give	us	the	orders	where	at	least
one	order	detail	has	a	quantity	of	60	or	more.	We	need	to
show	orders	with	more	than	one	order	detail	with	a
quantity	of	60	or	more.	Also,	the	same	value	for	quantity
needs	to	be	there	more	than	once.

Hint
In	addition	to	grouping	on	the	OrderID,	we	also	need	to
group	by	the	Quantity,	since	we	need	to	show	the	order
details	that	have	the	same	quantity,	within	an	order.	So,
we	need	to	group	by	both	OrderID,	and	Quantity.

39.												Orders	-	accidental	double-entry	details
Based	on	the	previous	question,	we	now	want	to	show
details	of	the	order,	for	orders	that	match	the	above
criteria.

Expected	Result
OrderID					ProductID			UnitPrice													Quantity	Discount	-----------	-----------	-
--------------------	--------	-------------
10263							16										13.90																	60							0.25
10263							30										20.70																	60							0.25
10263							24										3.60																		65							0
10263							74										8.00																		65							0.25
10658							60										34.00																	55							0.05
10658							21										10.00																	60							0
10658							40										18.40																	70							0.05
10658							77										13.00																	70							0.05
10990							34										14.00																	60							0.15
10990							21										10.00																	65							0
10990							55										24.00																	65							0.15
10990							61										28.50																	66							0.15
11030							29										123.79																60							0.25
11030							5											21.35																	70							0
11030							2											19.00																	100						0.25
11030							59										55.00																	100						0.25
	
(16	row(s)	affected)
	

Hint
There	are	many	ways	of	doing	this,	including	CTE
(common	table	expression)	and	derived	tables.	I	suggest
using	a	CTE	and	a	subquery.	Here's	a	good	article	on
CTEs	(https://technet.microsoft.com/en-
us/library/ms175972.aspx).
This	is	an	example	of	a	simple	CTE	in	Northwind.	It
returns	orders	made	by	the	oldest	employee:	;with
OldestEmployee	as	(
Select	top	1
				EmployeeID
from	Employees	order	by	BirthDate)	Select	OrderID
				,OrderDate	from	Orders	where	EmployeeID	in	(Select	EmployeeID	from
OldestEmployee)

https://technet.microsoft.com/en-us/library/ms175972.aspx

40.											Orders	-	accidental	double-entry	details,
derived	table
Here's	another	way	of	getting	the	same	results	as	in	the
previous	problem,	using	a	derived	table	instead	of	a	CTE.
However,	there's	a	bug	in	this	SQL.	It	returns	20	rows
instead	of	16.	Correct	the	SQL.
Problem	SQL:	Select	OrderDetails.OrderID
				,ProductID
				,UnitPrice	,Quantity	,Discount	From	OrderDetails	Join	(
								Select	OrderID
								From	OrderDetails	Where	Quantity	>=	60
								Group	By	OrderID,	Quantity	Having	Count(*)	>	1
)		PotentialProblemOrders	on	PotentialProblemOrders.OrderID	=
OrderDetails.OrderID
Order	by	OrderID,	ProductID

Hint
Your	first	step	should	be	to	run	the	SQL	in	the	derived
table
Select
				OrderID
From	OrderDetails
Where	Quantity	>=	60
Group	By	OrderID,	Quantity
Having	Count(*)	>	1
	
What	do	you	notice	about	the	results?

Hint
There	are	2	rows	for	OrderID	10263,	because	there	are	2
sets	of	rows	that	have	the	same,	identical	quantity,	that's
60	or	above.
When	you	do	a	join	to	a	table	that	has	duplicates,	you
will	get	duplicates	in	the	output	as	well,	unless	you	take
steps	to	avoid	it.
Find	a	single	keyword	that	you	can	easily	add	to	avoid
duplicates	in	SQL.

41.													Late	orders
Some	customers	are	complaining	about	their	orders
arriving	late.	Which	orders	are	late?

Expected	Result
OrderID					OrderDate				RequiredDate	ShippedDate	-----------	----------			----------
--	-----------
10264							2014-07-24			2014-08-21			2014-08-23
10271							2014-08-01			2014-08-29			2014-08-30
10280							2014-08-14			2014-09-11			2014-09-12
10302							2014-09-10			2014-10-08			2014-10-09
10309							2014-09-19			2014-10-17			2014-10-23
10380							2014-12-12			2015-01-09			2015-01-16
10423							2015-01-23			2015-02-06			2015-02-24
10427							2015-01-27			2015-02-24			2015-03-03
10433							2015-02-03			2015-03-03			2015-03-04
10451							2015-02-19			2015-03-05			2015-03-12
10483							2015-03-24			2015-04-21			2015-04-25
10515							2015-04-23			2015-05-07			2015-05-23
10523							2015-05-01			2015-05-29			2015-05-30
10545							2015-05-22			2015-06-19			2015-06-26
10578							2015-06-24			2015-07-22			2015-07-25
10593							2015-07-09			2015-08-06			2015-08-13
10596							2015-07-11			2015-08-08			2015-08-12
10663							2015-09-10			2015-09-24			2015-10-03
10687							2015-09-30			2015-10-28			2015-10-30
10660							2015-09-08			2015-10-06			2015-10-15
10705							2015-10-15			2015-11-12			2015-11-18
10709							2015-10-17			2015-11-14			2015-11-20
10726							2015-11-03			2015-11-17			2015-12-05
10727							2015-11-03			2015-12-01			2015-12-05
10749							2015-11-20			2015-12-18			2015-12-19
10777							2015-12-15			2015-12-29			2016-01-21
10779							2015-12-16			2016-01-13			2016-01-14
10788							2015-12-22			2016-01-19			2016-01-19
10807							2015-12-31			2016-01-28			2016-01-30
10816							2016-01-06			2016-02-03			2016-02-04
10827							2016-01-12			2016-01-26			2016-02-06
10828							2016-01-13			2016-01-27			2016-02-04

10847							2016-01-22			2016-02-05			2016-02-10
10924							2016-03-04			2016-04-01			2016-04-08
10927							2016-03-05			2016-04-02			2016-04-08
10960							2016-03-19			2016-04-02			2016-04-08
10970							2016-03-24			2016-04-07			2016-04-24
10978							2016-03-26			2016-04-23			2016-04-23
10998							2016-04-03			2016-04-17			2016-04-17
	
(39	row(s)	affected)

Hint
To	determine	which	orders	are	late,	you	can	use	a
combination	of	the	RequiredDate	and	ShippedDate.	It's
not	exact,	but	if	ShippedDate	is	actually	AFTER
RequiredDate,	you	can	be	sure	it's	late.

42.											Late	orders	-	which	employees?
Some	salespeople	have	more	orders	arriving	late	than
others.	Maybe	they're	not	following	up	on	the	order
process,	and	need	more	training.	Which	salespeople	have
the	most	orders	arriving	late?

Expected	Result
EmployeeID		LastName													TotalLateOrders
-----------	--------------------	---------------
4											Peacock														10
3											Leverling												5
8											Callahan													5
9											Dodsworth												5
7											King																	4
2											Fuller															4
1											Davolio														3
6											Suyama															3
	
(8	row(s)	affected)
	

Hint
The	answer	from	the	problem	above	is	a	good	starting
point.	You'll	need	to	join	to	the	Employee	table	to	get	the
last	name,	and	also	add	Count	to	show	the	total	late
orders.

43.											Late	orders	vs.	total	orders
Andrew,	the	VP	of	sales,	has	been	doing	some	more
thinking	some	more	about	the	problem	of	late	orders.	He
realizes	that	just	looking	at	the	number	of	orders	arriving
late	for	each	salesperson	isn't	a	good	idea.	It	needs	to	be
compared	against	the	total	number	of	orders	per
salesperson.	Return	results	like	the	following:

Expected	Result
EmployeeID		LastName													AllOrders			LateOrders
-----------	--------------------	-----------	-----------
1											Davolio														123									3
2											Fuller															96										4
3											Leverling												127									5
4											Peacock														156									10
6											Suyama															67										3
7											King																	72										4
8											Callahan													104									5
9											Dodsworth												43										5
	
(8	row(s)	affected)
	

Hint
You	can	use	more	than	one	CTE	in	a	query.	That	would
be	a	straightforward	way	of	solving	this	problem.

Hint
Here	are	2	SQL	statements	that	could	be	put	into	CTEs
and	put	together	into	a	final	SQL	statement.
--	Late	orders	Select	EmployeeID
				,TotalOrders	=	Count(*)	From	Orders	Where	RequiredDate	<=	ShippedDate
Group	By	EmployeeID
	
--	Total	orders	Select	EmployeeID
				,TotalOrders	=	Count(*)	From	Orders	Group	By	EmployeeID
	

44.											Late	orders	vs.	total	orders	-	missing
employee
There's	an	employee	missing	in	the	answer	from	the
problem	above.	Fix	the	SQL	to	show	all	employees	who
have	taken	orders.

Expected	Result
EmployeeID		LastName													AllOrders			LateOrders
-----------	--------------------	-----------	-----------
1											Davolio														123									3
2											Fuller															96										4
3											Leverling												127									5
4											Peacock														156									10
5											Buchanan													42										NULL
6											Suyama															67										3
7											King																	72										4
8											Callahan													104									5
9											Dodsworth												43										5
	
(9	row(s)	affected)
	

Hint
How	many	rows	are	returned	when	you	run	just	the
AllOrders	CTE?	How	about	when	you	run	just	the
LateOrders	CTE?

Hint
You'll	want	to	add	a	left	join	(also	known	as	a	left	outer
join),	to	make	sure	that	we	show	a	row,	even	if	there	are
no	late	orders.

45.											Late	orders	vs.	total	orders	-	fix	null
Continuing	on	the	answer	for	above	query,	let's	fix	the
results	for	row	5	-	Buchanan.	He	should	have	a	0	instead
of	a	Null	in	LateOrders.

Expected	Result
EmployeeID		LastName													AllOrders			LateOrders
-----------	--------------------	-----------	-----------
1											Davolio														123									3
2											Fuller															96										4
3											Leverling												127									5
4											Peacock														156									10
5											Buchanan													42										0
6											Suyama															67										3
7											King																	72										4
8											Callahan													104									5
9											Dodsworth												43										5
	
(9	row(s)	affected)
	

Hint
Find	a	function	to	test	if	a	value	is	null,	and	return	a
different	value	when	it	is.

46.											Late	orders	vs.	total	orders	-	percentage
Now	we	want	to	get	the	percentage	of	late	orders	over
total	orders.

Expected	Result
EmployeeID		LastName													AllOrders			LateOrders		PercentLateOrders	------
-----	--------------------	-----------	-----------	-------------------
1											Davolio														123									3											0.0243902439024
2											Fuller															96										4											0.0416666666666
3											Leverling												127									5											0.0393700787401
4											Peacock														156									10										0.0641025641025
5											Buchanan													42										0											0.0000000000000
6											Suyama															67										3											0.0447761194029
7											King																	72										4											0.0555555555555
8											Callahan													104									5											0.0480769230769
9											Dodsworth												43										5											0.1162790697674
	
(9	row(s)	affected)

Hint
By	dividing	late	orders	by	total	orders,	you	should	be
able	to	get	the	percentage	of	orders	that	are	late.
However,	there's	a	common	problem	people	run	into,
which	is	that	an	integer	divided	by	an	integer	returns	an
integer.	For	instance,	if	you	run	the	following	SQL	to
divide	3	by	2:	select	3/2
You’ll	get	1	instead	of	1.5,	because	it	will	return	the
closest	integer.
Do	some	research	online	to	find	the	answer	to	this	issue.

47.											Late	orders	vs.	total	orders	-	fix	decimal
So	now	for	the	PercentageLateOrders,	we	get	a	decimal
value	like	we	should.	But	to	make	the	output	easier	to
read,	let's	cut	the	PercentLateOrders	off	at	2	digits	to	the
right	of	the	decimal	point.

Expected	Result
EmployeeID		LastName													AllOrders			LateOrders		PercentLateOrders	------
-----	--------------------	-----------	-----------	-------------------
1											Davolio														123									3											0.02
2											Fuller															96										4											0.04
3											Leverling												127									5											0.04
4											Peacock														156									10										0.06
5											Buchanan													42										0											0.00
6											Suyama															67										3											0.04
7											King																	72										4											0.06
8											Callahan													104									5											0.05
9											Dodsworth												43										5											0.12
	
(9	row(s)	affected)

Hint
One	straightforward	way	of	doing	this	would	be	to
explicitly	convert	PercentageLateOrders	to	a	specific
Decimal	data	type.	With	the	Decimal	datatype,	you	can
specify	how	many	digits	you	want	to	the	right	of	the
decimal	point

Hint
The	calculation	PercentLateOrders	is	getting	a	little	long
and	complicated,	and	it	can	be	tricky	to	get	all	the
commas	and	parenthesis	correct.
One	way	to	simplify	it	is	to	break	it	down	with	an	actual
value	instead	of	a	calculation.
For	instance:
Select	convert(decimal(10,2),	0.0243902439024)

48.											Customer	grouping
Andrew	Fuller,	the	VP	of	sales	at	Northwind,	would	like
to	do	a	sales	campaign	for	existing	customers.	He'd	like
to	categorize	customers	into	groups,	based	on	how	much
they	ordered	in	2016.	Then,	depending	on	which	group
the	customer	is	in,	he	will	target	the	customer	with
different	sales	materials.
The	customer	grouping	categories	are	0	to	1,000,	1,000	to
5,000,	5,000	to	10,000,	and	over	10,000.
A	good	starting	point	for	this	query	is	the	answer	from
the	problem	“High-value	customers	-	total	orders.	We
don’t	want	to	show	customers	who	don’t	have	any	orders
in	2016.
Order	the	results	by	CustomerID.

Expected	Result
CustomerID	CompanyName																														TotalOrderAmount					
CustomerGroup	----------	--	---------------------	----

ALFKI						Alfreds	Futterkiste																						2302.20															Medium
ANATR						Ana	Trujillo	Emparedados	y	helados							514.40																Low
ANTON						Antonio	Moreno	Taquería																		660.00																Low
AROUT						Around	the	Horn																										5838.50															High	BERGS					
Berglunds	snabbköp																							8110.55															High	BLAUS						Blauer	See
Delikatessen																		2160.00															Medium	BLONP						Blondesddsl	père
et	fils																	730.00																Low	BOLID						Bólido	Comidas
preparadas																280.00																Low	BONAP						Bon
app'																																	7185.90															High	BOTTM						Bottom-Dollar
Markets																				12227.40														Very	High	BSBEV						B's
Beverages																												2431.00															Medium	CACTU						Cactus
Comidas	para	llevar															1576.80															Medium	CHOPS						Chop-suey
Chinese																								4429.40															Medium	...	(skipping	some	rows)
	
SPLIR						Split	Rail	Beer	&	Ale																				1117.00															Medium
SUPRD						Suprêmes	délices																									11862.50														Very	High
THEBI						The	Big	Cheese																											69.60																	Low	THECR						The
Cracker	Box																										326.00																Low	TOMSP						Toms
Spezialitäten																							910.40																Low	TORTU						Tortuga
Restaurante																						1874.50															Medium	TRADH						Tradição
Hipermercados																			4401.62															Medium	TRAIH						Trail's	Head
Gourmet	Provisioners								237.90																Low	VAFFE					
Vaffeljernet																													4333.50															Medium	VICTE						Victuailles
en	stock																					3022.00															Medium	WANDK						Die	Wandernde
Kuh																								1564.00															Medium	WARTH						Wartian
Herkku																											300.00																Low	WELLI						Wellington
Importadora																			1245.00															Medium	WHITC						White	Clover
Markets																					15278.90														Very	High	WILMK						Wilman
Kala																														1987.00															Medium	WOLZA						Wolski	
Zajazd																											1865.10															Medium	(81	row(s)	affected)
	

Hint
This	is	the	SQL	from	the	problem	“High-value	customers
-	total	orders”,	but	without	the	filter	for	order	totals	over
10,000.
	
Select	Customers.CustomerID
				,Customers.CompanyName	,TotalOrderAmount	=	SUM(Quantity	*	UnitPrice)
From	Customers	Join	Orders	on	Orders.CustomerID	=	Customers.CustomerID
				Join	OrderDetails	on	Orders.OrderID	=	OrderDetails.OrderID
Where	OrderDate	>=	'20160101'
				and	OrderDate		<	'20170101'
Group	By	Customers.CustomerID
				,Customers.CompanyName	Order	By	TotalOrderAmount	Desc;

Hint
You	can	use	the	above	SQL	in	a	CTE	(common	table
expression),	and	then	build	on	it,	using	a	Case	statement
on	the	TotalOrderAmount.

49.											Customer	grouping	-	fix	null
There's	a	bug	with	the	answer	for	the	previous	question.
The	CustomerGroup	value	for	one	of	the	rows	is	null.
Fix	the	SQL	so	that	there	are	no	nulls	in	the
CustomerGroup	field.

Expected	Result
(Including	only	a	subset	of	the	output)
	
CustomerID	CompanyName																					TotalOrderAmount						CustomerGroup
----------	-------------------------------	---------------------	-------------
LILAS						LILA-Supermercado															5994.06															High	LINOD					
LINO-Delicateses																10085.60														Very	High	LONEP						Lonesome
Pine	Restaurant								1709.40															Medium	MAGAA						Magazzini
Alimentari	Riuniti				1693.00															Medium	MAISD						Maison
Dewey																				5000.20															High	MORGK						Morgenstern
Gesundkost										245.00																Low	NORTS						North/South																				
45.00																	Low	OCEAN						Océano	Atlántico	Ltda.										3031.00														
Medium	OLDWO						Old	World	Delicatessen										5337.65															High
OTTIK						Ottilies	Käseladen														3012.70															Medium	PERIC					
Pericles	Comidas	clásicas							1496.00															Medium	PICCO						Piccolo	und
mehr																4393.75															Medium	PRINI						Princesa	Isabel	Vinhos									
2633.90															Medium	QUEDE						Que	Delícia																					1353.60														
Medium	QUEEN						Queen	Cozinha																			7007.65															High
QUICK						QUICK-Stop																						40526.99														Very	High	RANCH					
Rancho	grande																			1694.70															Medium	RATTC						Rattlesnake
Canyon	Grocery						21725.60														Very	High	REGGC						Reggiani
Caseifici														4263.00															Medium	RICAR						Ricardo
Adocicados														7312.00															High

Hint
What	is	the	total	order	amount	for	CustomerID	MAISD?
How	does	that	relate	to	our	CustomerGroup	boundaries?

Hint
Using	“between”	works	well	for	integer	values.	However,
the	value	we're	working	with	is	Money,	which	has
decimals.	Instead	of	something	like:
when	TotalOrderAmount	between	0	and	1000	then	'Low'
	
You'll	need	to	something	like	this:
when	TotalOrderAmount	>=	0	and	TotalOrderAmount		<	1000	then	'Low'

50.												Customer	grouping	with	percentage
Based	on	the	above	query,	show	all	the	defined
CustomerGroups,	and	the	percentage	in	each.	Sort	by	the
total	in	each	group,	in	descending	order.

Expected	Result
CustomerGroup	TotalInGroup	PercentageInGroup
-------------	------------	---------------------------------------
Medium								35											0.432098765432
Low											20											0.246913580246
High										13											0.160493827160
Very	High					13											0.160493827160
	
(4	row(s)	affected)
	

Hint
As	a	starting	point,	you	can	use	the	answer	from	the
problem	“Customer	grouping	-	fix	null”.	

Hint
We	no	longer	need	to	show	the	CustomerID	and
CompanyName	in	the	final	output.	However,	we	need	to
count	how	many	customers	are	in	each
CustomerGrouping.	You	can	create	another	CTE	level	in
order	to	get	the	counts	in	each	CustomerGrouping	for	the
final	output.

51.													Customer	grouping	-	flexible
Andrew,	the	VP	of	Sales	is	still	thinking	about	how	best
to	group	customers,	and	define	low,	medium,	high,	and
very	high	value	customers.	He	now	wants	complete
flexibility	in	grouping	the	customers,	based	on	the	dollar
amount	they've	ordered.	He	doesn’t	want	to	have	to	edit
SQL	in	order	to	change	the	boundaries	of	the	customer
groups.
How	would	you	write	the	SQL?
There's	a	table	called	CustomerGroupThreshold	that	you
will	need	to	use.	Use	only	orders	from	2016.

Expected	Result
(The	expected	results	are	the	same	as	for	the	original
problem,	it’s	just	that	we’re	getting	the	answer
differently.)	CustomerID
CompanyName																														TotalOrderAmount					
CustomerGroupName	----------	-------------------------------
---------	---------------------	--------------------
ALFKI						Alfreds	Futterkiste																						2302.20															Medium
ANATR						Ana	Trujillo	Emparedados	y	helados							514.40																Low
ANTON						Antonio	Moreno	Taquería																		660.00																Low
AROUT						Around	the	Horn																										5838.50															High	BERGS					
Berglunds	snabbköp																							8110.55															High	BLAUS						Blauer	See
Delikatessen																		2160.00															Medium	BLONP						Blondesddsl	père
et	fils																	730.00																Low	BOLID						Bólido	Comidas
preparadas																280.00																Low	BONAP						Bon
app'																																	7185.90															High	BOTTM						Bottom-Dollar
Markets																				12227.40														Very	High	BSBEV						B's
Beverages																												2431.00															Medium	CACTU						Cactus
Comidas	para	llevar															1576.80															Medium	CHOPS						Chop-suey
Chinese																								4429.40															Medium	COMMI						Comércio
Mineiro																									513.75																Low	...	(skipping	some	rows)
	
SPLIR						Split	Rail	Beer	&	Ale																				1117.00															Medium
SUPRD						Suprêmes	délices																									11862.50														Very	High
THEBI						The	Big	Cheese																											69.60																	Low	THECR						The
Cracker	Box																										326.00																Low	TOMSP						Toms
Spezialitäten																							910.40																Low	TORTU						Tortuga
Restaurante																						1874.50															Medium	TRADH						Tradição
Hipermercados																			4401.62															Medium	TRAIH						Trail's	Head
Gourmet	Provisioners								237.90																Low	VAFFE					
Vaffeljernet																													4333.50															Medium	VICTE						Victuailles
en	stock																					3022.00															Medium	WANDK						Die	Wandernde
Kuh																								1564.00															Medium	WARTH						Wartian
Herkku																											300.00																Low	WELLI						Wellington

Importadora																			1245.00															Medium	WHITC						White	Clover
Markets																					15278.90														Very	High	WILMK						Wilman
Kala																														1987.00															Medium	WOLZA						Wolski	
Zajazd																											1865.10															Medium	(81	row(s)	affected)
	
	

Hint
As	a	starting	point,	use	the	SQL	of	the	first	CTE	from	the
problem	“Customer	grouping	with	percentage”
Select	Customers.CustomerID
				,Customers.CompanyName	,TotalOrderAmount	=	SUM(Quantity	*	UnitPrice)
From	Customers	join	Orders	on	Orders.CustomerID	=	Customers.CustomerID
				join	OrderDetails	on	Orders.OrderID	=	OrderDetails.OrderID
Where	OrderDate	>=	'20160101'
				and	OrderDate		<	'20170101'
Group	By	Customers.CustomerID
				,Customers.CompanyName

Hint
When	thinking	about	how	to	use	the	table
CustomerGroupThreshold,	note	that	when	joining	to	a
table,	you	don't	need	to	only	use	an	equi-join	(i.e.,	“=“	in
the	join).	You	can	also	use	other	operators,	such	as
between,	and	greater	than/less	than	(>	and	<).

52.												Countries	with	suppliers	or	customers
Some	Northwind	employees	are	planning	a	business	trip,
and	would	like	to	visit	as	many	suppliers	and	customers
as	possible.	For	their	planning,	they’d	like	to	see	a	list	of
all	countries	where	suppliers	and/or	customers	are	based.

Expected	Results
Country

Argentina
Australia
Austria
Belgium
Brazil
Canada
Denmark
Finland
France
Germany
Ireland
Italy
Japan
Mexico
Netherlands
Norway
Poland
Portugal
Singapore
Spain
Sweden
Switzerland
UK
USA
Venezuela
	
(25	row(s)	affected)
	

Hint
Use	the	Union	statekent	for	this.	It’s	a	good	way	of
putting	together	a	simple	resultset	from	multiple	SQL
statements.

53.												Countries	with	suppliers	or	customers,
version	2
The	employees	going	on	the	business	trip	don’t	want	just
a	raw	list	of	countries,	they	want	more	details.	We’d	like
to	see	output	like	the	below,	in	the	Expected	Results.

Expected	Result
SupplierCountry	CustomerCountry	---------------	---------------
NULL												Argentina	Australia							NULL
NULL												Austria
NULL												Belgium
Brazil										Brazil
Canada										Canada
Denmark									Denmark
Finland									Finland
France										France
Germany									Germany
NULL												Ireland
Italy											Italy
Japan											NULL
NULL												Mexico
Netherlands					NULL
Norway										Norway
NULL												Poland
NULL												Portugal
Singapore							NULL
Spain											Spain
Sweden										Sweden
NULL												Switzerland	UK														UK
USA													USA
NULL												Venezuela	(25	row(s)	affected)
	

Hint
A	good	way	to	start	would	be	with	a	list	of	countries	from
the	Suppliers	table,	and	a	list	of	countries	from	the
Customers	table.	Use	either	Distinct	or	Group	by	to	avoid
duplicating	countries.	Sort	by	country	name

Hint
You	should	have	something	like	this:	Select	Distinct
Country	from	Customers	Select	Distinct	Country	from
Suppliers	You	can	combine	these	with	a	CTEs	or	derived
tables.
Note	that	there’s	a	specific	type	of	outer	join	you’ll	need,
designed	to	return	rows	from	either	resultset.		What	is	it?
Look	online	for	the	different	types	of	outer	join	available.

54.											Countries	with	suppliers	or	customers	-
version	3
The	output	of	the	above	is	improved,	but	it’s	still	not
ideal
What	we’d	really	like	to	see	is	the	country	name,	the	total
suppliers,	and	the	total	customers.

Expected	Result
Country									TotalSuppliers	TotalCustomers	---------------	--------------	------------
--
Argentina							0														3
Australia							2														0
Austria									0														2
Belgium									0														2
Brazil										1														9
Canada										2														3
Denmark									1														2
Finland									1														2
France										3														11
Germany									3														11
Ireland									0														1
Italy											2														3
Japan											2														0
Mexico										0														5
Netherlands					1														0
Norway										1														1
Poland										0														1
Portugal								0														2
Singapore							1														0
Spain											1														5
Sweden										2														2
Switzerland					0														2
UK														2														7
USA													4														13
Venezuela							0														4
	
(25	row(s)	affected)

Hint
You	should	be	able	to	use	the	above	query,	and	make	a
few	changes	to	the	CTE	source	queries	to	show	the	total
number	of	Supplier	countries	and	Customer	countries.
You	won’t	be	able	to	use	the	Distinct	keyword	anymore.

Hint
When	joining	the	2	CTEs	together,	you	can	use	a
computed	column,	with	the	IsNull	function	to	show	a
non-null	Country	field,	instead	of	the	Supplier	country	or
the	Customer	country.

55.												First	order	in	each	country
Looking	at	the	Orders	table—we’d	like	to	show	details
for	each	order	that	was	the	first	in	that	particular	country,
ordered	by	OrderID.
So,	we	need	one	row	per	ShipCountry,	and	CustomerID,
OrderID,	and	OrderDate	should	be	of	the	first	order	from
that	country.

Expected	Results
ShipCountry					CustomerID	OrderID					OrderDate	---------------	----------	---------
--	----------
Argentina							OCEAN						10409							2015-01-09
Austria									ERNSH						10258							2014-07-17
Belgium									SUPRD						10252							2014-07-09
Brazil										HANAR						10250							2014-07-08
Canada										MEREP						10332							2014-10-17
Denmark									SIMOB						10341							2014-10-29
Finland									WARTH						10266							2014-07-26
France										VINET						10248							2014-07-04
Germany									TOMSP						10249							2014-07-05
Ireland									HUNGO						10298							2014-09-05
Italy											MAGAA						10275							2014-08-07
Mexico										CENTC						10259							2014-07-18
Norway										SANTG						10387							2014-12-18
Poland										WOLZA						10374							2014-12-05
Portugal								FURIB						10328							2014-10-14
Spain											ROMEY						10281							2014-08-14
Sweden										FOLKO						10264							2014-07-24
Switzerland					CHOPS						10254							2014-07-11
UK														BSBEV						10289							2014-08-26
USA													RATTC						10262							2014-07-22
Venezuela							HILAA						10257							2014-07-16
	
(21	row(s)	affected)

Hint
Your	first	step	will	probably	be	to	create	a	query	like	this:
Select								
				ShipCountry
				,CustomerID
				,OrderID
				,OrderDate	=	convert(date,	OrderDate)
From	orders
Order	by
				ShipCountry
				,OrderID
	
…which	shows	all	the	rows	in	the	Order	table,	sorted	first
by	Country	and	then	by	OrderID.

Hint
Your	next	step	is	to	create	a	computed	column	that	shows
the	row	number	for	each	order,	partitioned	appropriately.
There’s	a	class	of	functions	called	Window	functions	or
Ranking	functions	that	you	can	use	for	this	problem.
Specifically,	use	the	Row_Number()	function,	with	the
Over	and	Partition	clause,	to	get	the	number,	per	country,
of	a	particular	order.

Hint
You’ll	have	something	like	this:	Select	ShipCountry
,CustomerID
				,OrderID
				,OrderDate	=	convert(date,	OrderDate)	,RowNumberPerCountry	=	
								Row_Number()	over	(Partition	by	ShipCountry	Order	by	ShipCountry,
OrderID)	From	Orders	Because	of	some	limitations	with	Window	functions,	you
can’t	directly	filter	the	computed	column	created	above.	Use	a	CTE	to	solve	the
problem.

56.												Customers	with	multiple	orders	in	5	day
period
There	are	some	customers	for	whom	freight	is	a	major
expense	when	ordering	from	Northwind.
However,	by	batching	up	their	orders,	and	making	one
larger	order	instead	of	multiple	smaller	orders	in	a	short
period	of	time,	they	could	reduce	their	freight	costs
significantly.
Show	those	customers	who	have	made	more	than	1	order
in	a	5	day	period.	The	sales	people	will	use	this	to	help
customers	reduce	their	costs.
Note:	There	are	more	than	one	way	of	solving	this	kind
of	problem.	For	this	problem,	we	will	not	be	using
Window	functions.

Expected	Result
CustomerID	InitialOrderID	InitialOrderDate	NextOrderID	NextOrderDate
DaysBetween	----------	--------------	----------------	-----------	-------------	-----------
ANTON						10677										2015-09-22							10682							2015-09-25				3
AROUT						10741										2015-11-14							10743							2015-11-17				3
BERGS						10278										2014-08-12							10280							2014-08-14				2
BERGS						10444										2015-02-12							10445							2015-02-13				1
BERGS						10866										2016-02-03							10875							2016-02-06				3
BONAP						10730										2015-11-05							10732							2015-11-06				1
BONAP						10871										2016-02-05							10876							2016-02-09				4
BONAP						10932										2016-03-06							10940							2016-03-11				5
BOTTM						10410										2015-01-10							10411							2015-01-10				0
BOTTM						10944										2016-03-12							10949							2016-03-13				1
BOTTM						10975										2016-03-25							10982							2016-03-27				2
BOTTM						11045										2016-04-23							11048							2016-04-24				1
BSBEV						10538										2015-05-15							10539							2015-05-16				1
BSBEV						10943										2016-03-11							10947							2016-03-13				2
	
...	(skipping	some	rows)
	
SEVES						10800										2015-12-26							10804							2015-12-30				4
SUPRD						10841										2016-01-20							10846							2016-01-22				2
SUPRD						11035										2016-04-20							11038							2016-04-21				1
TRADH						10830										2016-01-13							10834							2016-01-15				2
TRADH						10834										2016-01-15							10839							2016-01-19				4
TRAIH						10574										2015-06-19							10577							2015-06-23				4
VICTE						10806										2015-12-31							10814							2016-01-05				5
VICTE						10843										2016-01-21							10850							2016-01-23				2
VINET						10737										2015-11-11							10739							2015-11-12				1
WARTH						10412										2015-01-13							10416							2015-01-16				3
WELLI						10803										2015-12-30							10809							2016-01-01				2
WELLI						10900										2016-02-20							10905							2016-02-24				4
WHITC						10693										2015-10-06							10696							2015-10-08				2
WILMK						10873										2016-02-06							10879							2016-02-10				4
	
(71	row(s)	affected)
	

Hint
You	can	use	a	self-join,	with	2	instances	of	the	Orders
table,	joined	by	CustomerID.	Good	naming	for	the	table
aliases	(table	instances)	are	important	for	readability.
Don't	name	them	Order1	and	Order2.

Hint
Select	InitialOrder.CustomerID
				,InitialOrderID	=	InitialOrder.OrderID
				,InitialOrderDate	=	InitialOrder.OrderDate	,NextOrderID	=
NextOrder.OrderID
				,NextOrderDate	=	NextOrder.OrderDate	from	Orders	InitialOrder	join	Orders
NextOrder	on	InitialOrder.CustomerID	=	NextOrder.CustomerID
Order	by	InitialOrder.CustomerID
				,InitialOrder.OrderID
	
This	is	a	good	start.	You	will	need	to	filter	on	additional
fields	in	the	join	clause	between	InitialOrder	and
NextOrder,	because	as	it	is,	this	returns	far	too	many
orders.	It	has	what's	called	a	cartesian	product	between
the	2	instances	of	the	Orders	table.	This	means	that	for
the	total	number	of	orders	for	a	particular	customer	in
Orders,	you'll	have	that	number,	squared,	in	the	output.
Look	at	some	of	the	OrderID	and	OrderDate	values	in
InitialOrder	and	NextOrder.	Some	of	them	definitely
disqualify	a	row	based	on	our	criteria.

Hint
Should	the	OrderID	of	the	NextOrder	ever	be	less	than	or
equal	to	the	OrderID	of	the	NextOrder?

Hint
Based	on	the	hint	above,	we	added	a	where	clause.
	
Select	InitialOrder.CustomerID
				,InitialOrderID	=	InitialOrder.OrderID
				,InitialOrderDate	=	InitialOrder.OrderDate	,NextOrderID	=
NextOrder.OrderID
				,NextOrderDate	=	NextOrder.OrderDate	from	Orders	InitialOrder	join	Orders
NextOrder	on	InitialOrder.CustomerID	=	NextOrder.CustomerID
where	InitialOrder.OrderID	<	NextOrder.OrderID
Order	by	InitialOrder.CustomerID
				,InitialOrder.OrderID
	
Adding	this	filter:	and	InitialOrder.OrderID	<
NextOrder.OrderID
…has	cut	down	the	output	a	lot.	However,	we	still	need
to	filter	for	the	5	day	period.
Create	a	new	field	called	DaysBetween	that	calculates	the
number	of	days	between	the	InitialOrder	OrderDate	and
the	NextOrder	OrderDate.	Use	the	DateDiff	function.

Hint
You	should	now	have	a	line	like	this:
				DaysBetween	=	datediff(dd,	InitialOrder.OrderDate,	NextOrder.OrderDate)
Use	this	calculation	in	the	Where	clause	to	filter	for	5
days	or	less	between	orders.

57.												Customers	with	multiple	orders	in	5	day
period,	version	2
There’s	another	way	of	solving	the	problem	above,	using
Window	functions.	We	would	like	to	see	the	following
results.

Expected	Results
CustomerID	OrderDate		NextOrderDate	DaysBetweenOrders	----------	----------	-
------------	-----------------
ANTON						2015-09-22	2015-09-25				3
AROUT						2015-11-14	2015-11-17				3
BERGS						2014-08-12	2014-08-14				2
BERGS						2015-02-12	2015-02-13				1
BERGS						2016-02-03	2016-02-06				3
BONAP						2015-11-05	2015-11-06				1
BONAP						2016-02-05	2016-02-09				4
BONAP						2016-03-06	2016-03-11				5
BOTTM						2015-01-10	2015-01-10				0
BOTTM						2016-03-12	2016-03-13				1
BOTTM						2016-03-25	2016-03-27				2
BOTTM						2016-04-23	2016-04-24				1
	
...	(skipping	some	rows)
	
SAVEA						2016-03-27	2016-03-30				3
SAVEA						2016-04-17	2016-04-17				0
SEVES						2015-12-26	2015-12-30				4
SUPRD						2016-01-20	2016-01-22				2
SUPRD						2016-04-20	2016-04-21				1
TRADH						2016-01-13	2016-01-15				2
TRADH						2016-01-15	2016-01-19				4
TRAIH						2015-06-19	2015-06-23				4
VICTE						2015-12-31	2016-01-05				5
VICTE						2016-01-21	2016-01-23				2
VINET						2015-11-11	2015-11-12				1
WARTH						2015-01-13	2015-01-16				3
WELLI						2015-12-30	2016-01-01				2
WELLI						2016-02-20	2016-02-24				4
WHITC						2015-10-06	2015-10-08				2
WILMK						2016-02-06	2016-02-10				4
	
(69	row(s)	affected)

Hint
The	window	function	to	use	here	is	the	Lead	function.
Look	up	some	examples	of	the	Lead	function	online.
As	a	first	step,	write	SQL	using	the	Lead	function	to
return	results	like	the	following.	The	NextOrderDate	is	a
computed	column	that	uses	the	Lead	function.
CustomerID	OrderDate		NextOrderDate	----------	----------	-------------
ALFKI						2015-08-25	2015-10-03
ALFKI						2015-10-03	2015-10-13
ALFKI						2015-10-13	2016-01-15
ALFKI						2016-01-15	2016-03-16
ALFKI						2016-03-16	2016-04-09
ALFKI						2016-04-09	NULL
ANATR						2014-09-18	2015-08-08
ANATR						2015-08-08	2015-11-28
ANATR						2015-11-28	2016-03-04
ANATR						2016-03-04	NULL
	

Hint
You	should	have	something	like	this:	Select	CustomerID
				,OrderDate	=	convert(date,	OrderDate)	,NextOrderDate	=
								convert(
												date	,Lead(OrderDate,1)	OVER	(Partition	by	CustomerID	order	by
CustomerID,	OrderDate))	From	Orders	Order	by	CustomerID
				,OrderID
	
Now,	take	the	output	of	this,	and	using	a	CTE	and	the
DateDiff	function,	filter	for	rows	which	match	our
criteria.

	
Congratulations!	You've	completed	the	advanced

problems	Any	questions	or	feedback	on	the	problems,
hints,	or	answers?	I'd	like	to	hear	from	you.	Please	email

me	at	feedback@SQLPracticeProblems.com.
	
	

mailto:feedback@SQLPracticeProblems.com

	
	
	

ANSWERS

Introductory	Problems

1.																		Which	shippers	do	we	have?

Answer
Select
				*
From	Shippers

Discussion
This	is	a	basic	select	statement,	returning	all	rows,	just	to
get	you	warmed	up.
Most	of	the	time,	a	simple	select	statement	like	this	is
written	all	on	one	line,	like	this:	Select	*	From	Shippers
But	because	we’ll	be	getting	more	complex	quickly,	we’ll
start	out	with	formatting	it	with	separate	lines	for	each
clause,	which	we’ll	be	doing	in	future	questions.

2.																	Certain	fields	from	Categories

Answer
Select
				CategoryName
				,Description
from	Categories

Discussion
Instead	of	doing	a	“Select	*”,	we	specify	the	column
names,	and	only	get	those	columns	returned.

3.																	Sales	Representatives

Answer
Select
				FirstName
				,LastName
				,HireDate
From	Employees
Where
				Title	=	'Sales	Representative'

Discussion
This	is	a	simple	filter	against	a	string	datatype.	When
comparing	a	value	to	a	string	datatype,	you	need	to
enclose	the	value	in	single	quotes.
What	happens	when	you	don’t?	Try	running	the
following:	Select	FirstName	,LastName	,HireDate	From
Employees	Where	Title	=	Sales	Representative	Notice
that	SQL	Server	gives	the	error:	Incorrect	syntax	near
'Representative'.
	
What	about	if	you	compare	against	a	number?	Try	the
following:	Select	FirstName	,LastName	,HireDate	From
Employees	Where	Title	=	1
	
You	should	get	a	conversion	failure	error.

4.																	Sales	Representatives	in	the	United	States

Answer
Select
				FirstName
				,LastName
				,HireDate
From	Employees
Where
				Title	=	'Sales	Representative'
				and	Country	=	'USA'

Discussion
You	can	have	as	many	filters	in	the	where	clause	as	you
need.	I	usually	indent	all	the	filters,	and	put	them	on	new
lines,	in	order	to	make	it	easier	to	read.

5.																	Orders	placed	by	specific	EmployeeID

Answer
Select
				OrderID
				,OrderDate
From	Orders
Where
				EmployeeID	=	5

Discussion
This	simple	query	filters	for	one	value	in	the	EmployeeID
field,	using	the	“=”	comparison	operator.
Here’s	another	set	of	very	commonly	used	comparison
operators	that	you’re	probably	familiar	with	from	math
class:	>	Greater	than	<	Less	than	>=	Greater	than	or	equal
to	<=	Less	than	or	equal	to

6.																	Suppliers	and	ContactTitles

Answer
Select
				SupplierID
				,ContactName
				,ContactTitle
From	Suppliers
Where
				ContactTitle	<>	'Marketing	Manager'

Discussion
Another	way	of	expressing	the	Not	is	by	using	the
following
!=

So,	the	below	is	equivalent	to	the	answer	with	“<>”.
Select
				CompanyName
				,ContactName
				,ContactTitle
From	Suppliers
Where
				ContactTitle	!=	'Marketing	Manager'
	

7.																	Products	with	“queso”	in	ProductName

Answer
Select
				ProductID
				,ProductName
From	Products
Where
				ProductName	like	'%queso%'

Discussion
The	“Like”	operator	is	always	used	with	wildcards,	such
as	the	percent	symbol	(%),	which	substitutes	for	any
number	of	characters.
Note	that	even	though	the	search	string	used	a	lowercase
“q”	with	the	Like	clause	ProductName	like	'%queso%'
	
the	resulting	rows	both	had	an	uppercase	Q.
Queso	Cabrales	Queso	Manchego	La	Pastora	This	is	because	the	default
installation	of	SQL	Server	is	case	insensitive,	although	it	is	also	possible	to	have
a	case-sensitive	installation.

8.																	Orders	shipping	to	France	or	Belgium

Answer
Select
				OrderID
				,CustomerID
				,ShipCountry
From	Orders
where
				ShipCountry	=	'France'
				or	ShipCountry	=	'Belgium'

Discussion
This	is	a	very	simple	example,	but	in	many	situations	you
will	have	multiple	where	clauses,	with	combined	“Or”
and	“And”	sections.
In	this	situation,	an	alternative	would	have	been	to	use
the	“In”	operator.	We’ll	do	that	in	a	future	problem.

9.																	Orders	shipping	to	any	country	in	Europe

Answer
Select
				OrderID
				,CustomerID
				,ShipCountry
From	Orders
where
				ShipCountry	in
								(
								'Brazil'
								,'Mexico'
								,'Argentina'
								,'Venezuela'
)

Discussion
Using	the	In	statement	like	this	is	a	very	common
scenario	when	writing	SQL.	Whenever	there’s	more	than
just	a	few—say	2	or	3—values	that	we’re	filtering	for,	I
will	generally	put	them	on	separate	lines.	It’s	easier	to
read,	understand,	and	modify.
Also,	many	times	the	list	of	items	you’re	filtering	for	will
be	coming	from	somewhere	else—for	instance,	a
spreadsheet—and	will	already	be	on	separate	lines.

10.													Employees,	in	order	of	age

Answer
Select
				FirstName
				,LastName
				,Title
				,BirthDate
From	Employees
Order	By	Birthdate

Discussion
This	is	a	simple	example	of	an	Order	By	clause.
By	default,	SQL	Server	sorts	by	ascending	order	(first	to
last).	To	sort	in	desending	order	(last	to	first),	run	the
following,	with	the	desc	keyword:	Select	FirstName
,LastName	,Title	,BirthDate	From	Employees	Order	By
Birthdate	desc		--	keyword	desc	for	last	to	first	search

11.														Showing	only	the	Date	with	a	DateTime
field

Answer
Select
				FirstName
				,LastName
				,Title
				,DateOnlyBirthDate	=	convert(date,	BirthDate)
From	Employees
Order	By	Birthdate

Discussion
What	we’re	using	here	is	called	a	computed	column,	also
sometimes	called	a	calculated	column.	Anytime	you’re
doing	something	besides	just	returning	the	column,	as	it
is	stored	in	the	database,	you’re	using	a	computed
column.	In	this	case,	we’re	applying	a	function	to	convert
the	datatype	returned.
Note	that	we’ve	added	a	name,	DateOnlyBirthDate,	for
our	computed	column.	This	is	called	an	“alias”.
DateOnlyBirthDate	=	convert(date,	BirthDate)
	
If	you	don’t	actually	specify	the	column	alias,	you	get	an
empty	column	header,	which	is	very	unhelpful.

12.													Employees	full	name

Answer
	
Select
				FirstName
				,LastName
				,FullName	=	FirstName	+	'	'	+	LastName
From	Employees

Discussion
This	is	another	example	of	the	computed	column.	In	this
case,	instead	of	applying	a	function	to	a	field,	we’re
concatenating	two	fields.
Another	way	to	do	concatenation,	as	of	SQL	Server	2012,
is	using	the	Concat	function,	as	below.
Select	FirstName	,LastName	,FullName	=	concat(FirstName	,	'	'	,	LastName)
From	Employees	The	Concat	function	isn’t	very	well	known	yet,	since	SQL
programmers	are	more	familiar	with	using	the	+	operator	to	concatenate	strings.
However,	there	are	benefits	to	using	Concat — mainly	when	there	are	nulls	in
the	data.

13.													OrderDetails	amount	per	line	item

Answer
Select
				OrderID
				,ProductID
				,UnitPrice
				,Quantity
				,TotalPrice	=	UnitPrice	*	Quantity
From	OrderDetails
Order	by
				OrderID
				,ProductID

Discussion
Here	we	have	another	example	of	a	computed	column,
this	time	using	the	arithmetic	operator	“*”for
multiplication.
A	note	on	aliases—I	believe	the	alias	structure	that	I	have
above,	with	the	alias	name	first	and	the	computation
after,	is	easiset	to	read.
However,	you’ll	also	very	frequently	see	this	structure,
using	“as”:	Select	OrderID
				,ProductID
				,UnitPrice	,Quantity	,UnitPrice	*	Quantity	as	TotalPrice				--	Alias	using	"as"
From	OrderDetails	Order	by	OrderID
				,ProductID
	

14.													How	many	customers?

Answer
Select
				TotalCustomers	=	count(*)
from	Customers

Discussion
Aggregates	functions	and	grouping	are	very	important
when	retrieving	data.	In	almost	all	cases,	when	doing	data
analysis,	you’ll	be	using	multiple	groupings	and
aggregates.

15.													When	was	the	first	order?

Answer
Select
				FirstOrder	=	min(OrderDate)
From	Orders
	

Discussion
For	the	aggregate	function	Count,	you	don’t	need	to
specify	a	column	name	-	just	count(*)	will	work.
However,	for	other	aggregate	functions	such	as	Min,
Avg,	Sum,	etc,	you	will	need	to	specify	a	column	name
since	you’re	not	just	counting	all	rows.

16.													Countries	where	there	are	customers

Answer
Select
				Country
From	Customers
Group	by
				Country

Discussion
The	Group	By	clause	is	a	cornerstone	of	SQL.	With	most
data	analysis	of	any	complexity	at	all,	you’ll	be	using
multiple	Group	By	clauses,	so	they’re	important	to
understand.
Another	way	of	getting	the	same	results	is	to	use	the
Distinct	keyword,	as	below:	Select	distinct	Country	From
Customers	It	looks	simpler,	and	it	is,	for	queries	that	are
very	straightforward.	But	in	everyday	use,	you’ll	almost
always	be	using	the	Group	By	instead	of	Distinct,
because	you’ll	need	to	use	additional	aggregate	functions
such	as	Count,	and	Sum.

17.													Contact	titles	for	customers

Answer
Select
				ContactTitle
				,TotalContactTitle	=	count(*)
From	Customers
Group	by
				ContactTitle
Order	by
				count(*)	desc

Discussion
This	particular	construction,	with	a	grouping,	and	then	a
count	of	the	total	in	each	group,	is	very	common	both	on
its	own,	and	as	a	part	of	other	queries.

18.													Products	with	associated	supplier	names

Answer
Select
				ProductID
				,ProductName
				,Supplier	=	CompanyName
From	Products
				Join	Suppliers
								on	Products.SupplierID	=	Suppliers.SupplierID

Discussion
Joins	can	range	from	the	very	simple,	which	we	have
here,	to	the	very	complex.	You	need	to	understand	them
thoroughly,	as	they’re	critical	in	writing	anything	but	the
simplest	SQL.
One	thing	you’ll	see	when	reading	SQL	code	is,	instead
of	something	like	the	answer	above,	something	like	this:
Select	ProductID
				,ProductName	,Supplier	=	CompanyName	From	Products	P									--	Aliased
table	Join	Suppliers	S				--	Aliased	table	on	P.SupplierID	=	S.SupplierID
	
Notice	that	the	Products	table	and	Suppliers	table	is
aliased,	or	renamed,	with	one	letter	aliases—P	and	S.	If
this	is	done,	the	P	and	S	need	to	be	used	in	the	On	clause
as	well.
I’m	not	a	fan	of	this	type	of	aliasing,	although	it’s
common.	The	only	benefit	is	avoiding	some	typing,
which	is	trivial.	But	the	downside	is	severe—it	leads	to
code	that	is	much	harder	to	read.
It’s	not	so	much	a	problem	in	small	chunks	of	SQL	like
this	one.	However,	in	long,	convoluted	SQL,	you’ll	find
yourself	wondering	what	the	one-letter	aliases	mean,
always	needing	to	refer	back	to	the	From	clause,	and
translate	in	your	head.
The	only	time	I	use	tables	aliases	is	if	the	table	name	is
extremely	long.	And	then,	I	use	table	alias	names	that	are

understandable,	just	shortened.

19.													Orders	and	the	Shipper	that	was	used

Answer
Select
				OrderID
				,OrderDate	=	convert(date,	OrderDate)
				,Shipper	=		CompanyName
From	Orders
				join	Shippers
								on	Shippers.ShipperID	=	Orders.ShipVia
Where
				OrderID	<	10300
Order	by
				OrderID

Discussion
One	common	coding	practice	is	to	write	the	SQL	as
follows,	with	a	table	alias	added	to	each	column	in	the
Select	statement:	Select	O.OrderID
				,OrderDate	=	convert(date,	O.OrderDate)	,Shipper	=		S.CompanyName	From
Orders	O
				join	Shippers	S
								on	S.ShipperID	=	O.ShipVia	Where	O.OrderID	<	10300
Order	by	O.OrderID
	
In	this	case	O	is	prefixed	to	the	fields	from	the	Orders
table,	and	S	to	the	fields	from	the	Shippers	table.
Usually	I	don’t	do	this—I	think	it	just	adds	extra	text
without	enhancing	readability.
However,	it	is	sometimes	impossible	to	run	SQL	without
prefixing	the	column	name	with	the	table	name.	For
instance,	try	running	the	following:	Select	ProductID
				,ProductName	,Supplier	=	CompanyName	,SupplierID
From	Products	Join	Suppliers	on	Products.SupplierID	=	Suppliers.SupplierID
	
What	error	do	you	get?	Fix	the	error	by	adding	a	table
name	in	front	of	the	SupplierID.
Adding	a	table	name	to	SupplierID	is	necessary	because
otherwise	SQL	Server	doesn’t	know	if	you	want	to	return
the	SupplierID	from	Products	or	Suppliers.
	
	

	

Intermediate	Problems

20.												Categories,	and	the	total	products	in	each
category

Answer
Select
				CategoryName
				,TotalProducts	=	count(*)
From	Products
				Join	Categories
								on	Products.CategoryID	=	Categories.CategoryID
Group	by
				CategoryName
Order	by
				count(*)	desc

Discussion
We’re	expanding	our	knowledge	of	grouping	here	with	a
very	common	scenario—grouping	across	two	joined
tables.	In	this	case,	the	tables	have	what’s	called	a	parent-
child	relationship.	The	parent	table	is	Categories,	and	the
child	table	is	Products.

21.													Total	customers	per	country/city

Answer
Select
				Country
				,City
				,TotalCustomer	=	Count(*)
From	Customers
Group	by
				Country
				,City
Order	by
				count(*)	desc

Discussion
Note	that	once	you	have	a	Group	by	clause	in	a	SQL
statement,	every	field	that	appears	in	the	Select	statement
needs	to	either	appear	in	the	Group	by	clause,	or	needs	to
have	some	kind	of	aggregate	function	applied	to	it.
For	instance,	try	running	the	following,	with	the	City	in
the	Group	by	clause	commented	out,	so	we’re	no	longer
grouping	by	City.
Select	Country	,City	,TotalCustomer	=	Count(*)	From	Customers	Group	by
Country	--,City	Order	by	count(*)	desc	When	you	run	this,	you	should	receive
this	error	message:	Msg	8120,	Level	16,	State	1,	Line	3
Column	'Customers.City'	is	invalid	in	the	select	list	because	it	is	not	contained	in
either	an	aggregate	function	or	the	GROUP	BY	clause.
	
This	means	that	the	query	engine	doesn't	know	which
City	that	you	want	to	display.	Every	field	in	the	Select
clause	needs	to	either	have	an	aggregate	function	(like
Sum,	Count,	etc),	or	also	be	in	the	Group	by.	The	reason
behind	this	is	that	there	could	potentially	be	multiple
different	cities	for	any	one	value	in	the	Country,	and	the
database	engine	wouldn’t	know	whinch	one	to	show.
	

22.												Products	that	need	reordering

Answer
Select
				ProductID
				,ProductName
				,UnitsInStock
				,ReorderLevel
From	Products
Where
				UnitsInStock	<=	ReorderLevel
Order	by	ProductID

Discussion
This	is	a	straightforward	query	on	one	table.	Instead	of
using	a	string	or	numeric	value	to	filter,	we’re	using
another	field.

23.												Products	that	need	reordering,	continued

Answer
Select
				ProductID
				,ProductName
				,UnitsInStock
				,UnitsOnOrder
				,ReorderLevel
				,Discontinued
From	Products
Where
				UnitsInStock	+	UnitsOnOrder	<=	ReorderLevel
				and	Discontinued	=	0
Order	by	ProductID
	

Discussion
Instead	of	writing
and	Discontinued	=	0
	
…you	can	also	write	the	following	if	you	find	it	easier	to
read:
and	Discontinued	=	convert(bit,	'FALSE')

SQL	Server	will	automatically	convert	it	to	0.
	

24.											Customer	list	by	region

Answer
Select
				CustomerID
				,CompanyName
				,Region
From	Customers
Order	By
				Case		
								when	Region	is	null	then	1
								else	0
				End
				,Region
				,CustomerID

Discussion
Once	we	have	the	Case	expression	set	up	correctly,	you
just	need	to	create	an	Order	By	clause	for	it,	and	add	the
additional	fields	for	sorting	(Region	and	CustomerID).
If	we	had	wanted	to	include	the	sorting	field	in	the	output
,	you	could	write	this:	Select	CustomerID
				,CompanyName	,Region	,RegionOrder=
								Case		
								when	Region	is	null	then	1
								else	0
				End	From	Customers	Order	By	RegionOrder	,Region	,CustomerID
You	would	not	need	to	repeat	the	case	statement	in	the
Order	By,	you	can	just	refer	to	the	alias	-	RegionOrder.

25.												High	freight	charges

Answer
Select	Top	3
				ShipCountry
				,AverageFreight	=	Avg(freight)
From	Orders
Group	By	ShipCountry
Order	By	AverageFreight	desc;

Discussion
Using	Top	is	the	easiest	and	most	commonly	used
method	of	showing	only	a	certain	number	of	records.
Another	way	is	by	using	Offset,	as	below.
Select
				ShipCountry
				,AverageFreight	=	AVG(freight)
From	Orders
Group	By	ShipCountry
Order	by	AverageFreight	DESC
OFFSET	0	ROWS	FETCH	FIRST	3	ROWS	ONLY
	

26.												High	freight	charges	-	2015

Answer
Select	Top	3
				ShipCountry
				,AverageFreight	=	avg(freight)
From	Orders
Where
				OrderDate	>=	'20150101'
				and	OrderDate		<	'20160101'
Group	By	ShipCountry
Order	By	AverageFreight	desc;

Discussion
An	alternate	way	to	write	the	where	clause	is	this:	Where
OrderDate	>=	'1/1/2015'
				and	OrderDate		<	'1/1/2016'
	
Depending	on	which	date	format	you're	used	to,	it	may	be
easier	to	read.	However,	using	the	format	YYYYMMDD
will	be	correct	world-wide,	regardless	of	the	DateFormat
setting	in	SQL	Server.
And	here’s	still	another	way	of	writing	this:	Select	Top	3
				ShipCountry	,AverageFreight	=	avg(freight)	From	Orders	Where
year(OrderDate)	=	2015										--	using	Year	function	Group	By	ShipCountry
Order	By	AverageFreight	desc;	This	looks	straightforward	and	is	easy	to	read.
However,	when	you	put	a	function	such	as	Year	on	the	OrderDate	field,	we	can’t
use	the	index	anymore.	Also,	you	can	only	filter	for	specific	calendar	years,	so
it’s	not	very	flexible.

27.												High	freight	charges	with	between

Answer
The	OrderID	that’s	causing	the	different	results	is	10806.

Discussion
There’s	an	order	made	on	December	31,	2015	with	a
really	high	value	in	the	Freight	field.	This	would	have
skewed	the	results,	and	put	France	in	third	place	for
highest	freight	charges,	but	only	if	it	were	included	in	the
Where	clause.
This	SQL	would	have	worked	fine	if	OrderDate	were	a
Date	field,	instead	of	DateTime.

OrderDate	between	'1/1/2015'	and	'12/31/2015'

However,	since	it’s	a	DateTime	field,	it	gives	an	incorrect
answer	because	it's	not	taking	into	account	records	where
the	OrderDate	is	during	the	day	on	December	31,	2015.
Note	that	for	a	DateTime	field,	the	value	12/31/2015
is	equivalent	only	to	2015-12-31	00:00:00.000
…and	not	to	values	that	have	a	time	component.

28.											High	freight	charges	-	last	year

Answer
Select	TOP	(3)
				ShipCountry
				,AverageFreight	=	Avg(freight)
From	Orders
Where
				OrderDate	>=	Dateadd(yy,	-1,	(Select	max(OrderDate)	from	Orders))
Group	by	ShipCountry
Order	by	AverageFreight	desc;

Discussion
Using	SQL	like	this	that	can	generate	a	dynamic	date
range	is	critical	for	most	data	analysis	work.	Most	reports
and	queries	will	need	to	be	flexible,	without	hard-coded
date	values.

29.												Inventory	list

Answer
Select
				Employees.EmployeeID
				,Employees.LastName
				,Orders.OrderID
				,Products.ProductName
				,OrderDetails.Quantity
From	Employees
				join	Orders
								on	Orders.EmployeeID	=	Employees.EmployeeID
				join	OrderDetails
								on	Orders.OrderID	=	OrderDetails.OrderID
				join	Products
								on	Products.ProductID	=	OrderDetails.ProductID
Order	by
				Orders.OrderID
				,Products.ProductID

Discussion
This	problem	is	more	practice	with	basic	joins	and
multiple	tables.
You	can	replace	Join	with	Inner	Join,	but	mostly	people
just	use	Join.

30.												Customers	with	no	orders

Answer
Select
				Customers_CustomerID	=	Customers.CustomerID
				,Orders_CustomerID	=	Orders.CustomerID
From	Customers
				left	join	Orders
								on	Orders.CustomerID	=	Customers.CustomerID
Where
				Orders.CustomerID	is	null

Discussion
There	are	many	ways	of	getting	the	same	results.	The
main	options	are	the	Left	Join	with	Is	Null,	Not	In,	and
Not	Exists.	
Above,	we	used	the	Left	Join	option.	When	performance
is	equivalent,	I	prefer	the	Not	In	method,	shown	below.
Select	CustomerID
From	Customers	Where	CustomerID	not	in	(select	CustomerID	from	Orders)	I
believe	this	is	the	easiest	to	read	and	understand.
	
Another	option	is	to	use	Not	Exists.	This	requires	a
correlated	subquery.
Select	CustomerID
From	Customers	Where	Not	Exists	(
				Select	CustomerID
				from	Orders	where	Orders.CustomerID	=	Customers.CustomerID
)	Performance	for	the	different	options	can	be	affected	by	whether	or	not	the
fields	are	indexed	or	nullable.	For	additional	reading	on	the	details,	check	out
this	article:	NOT	IN	vs.	NOT	EXISTS	vs.	LEFT	JOIN	/	IS	NULL:	SQL	Server
(https://explainextended.com/2009/09/15/not-in-vs-not-exists-vs-left-join-is-
null-sql-server/).

https://explainextended.com/2009/09/15/not-in-vs-not-exists-vs-left-join-is-null-sql-server/

31.													Customers	with	no	orders	for	EmployeeID
4

Answer
Select
				Customers.CustomerID
				,Orders.CustomerID
From	Customers
				left	join	Orders
								on	Orders.CustomerID	=	Customers.CustomerID
								and	Orders.EmployeeID	=	4
Where
				Orders.CustomerID	is	null

Discussion
Because	the	filters	in	the	Where	clause	are	applied	after
the	results	of	the	Join,	we	need	the	EmployeeID	=	4	filter
in	the	Join	clause,	instead	of	the	Where	clause.
Run	the	below	query	and	review	the	results.	It	should
give	you	a	better	sense	of	how	the	left	join	with	“is	null”
works.	Note	that	the	Where	clause	is	commented	out.
Select	Customers.CustomerID
				,Orders.CustomerID
				,Orders.EmployeeID
From	Customers	left	join	Orders	on	Orders.CustomerID	=
Customers.CustomerID
								and	Orders.EmployeeID	=	4
--	Where	--					Orders.CustomerID	is	null	The	most	common	way	to	solve	this
kind	of	problem	is	as	above,	with	a	left	join.	However,	here	are	some
alternatives	using	Not	In	and	Not	Exists.
Select	CustomerID
From	Customers	Where	CustomerID	not	in	(select	CustomerID	from	Orders
where	EmployeeID	=	4)	Select	CustomerID
From	Customers	Where	Not	Exists	(
				Select	CustomerID
				from	Orders	where	Orders.CustomerID	=	Customers.CustomerID
								and	EmployeeID	=	4
)

Advanced	Problems

32.												High-value	customers

Answer
Select
				Customers.CustomerID
				,Customers.CompanyName
				,Orders.OrderID
				,TotalOrderAmount	=	SUM(Quantity	*	UnitPrice)
From	Customers
				Join	Orders
								on	Orders.CustomerID	=	Customers.CustomerID
				Join	OrderDetails
								on	Orders.OrderID	=	OrderDetails.OrderID
Where
				OrderDate	>=	'20160101'
				and	OrderDate		<	'20170101'
Group	by
				Customers.CustomerID
				,Customers.CompanyName
				,Orders.Orderid
Having	Sum(Quantity	*	UnitPrice)	>	10000
Order	by	TotalOrderAmount	DESC

Discussion
If	you	tried	putting	this	filter
and	sum(Quantity	*	UnitPrice)		>=	10000
	
…	in	the	where	clause,	you	got	an	error.	Aggregate
functions	can	only	be	used	to	filter	(with	some
exceptions)	in	the	Having	clause,	not	the	Where	clause.

33.												High-value	customers	-	total	orders

Answer
Select	Customers.CustomerID
				,Customers.CompanyName	--,Orders.OrderID
				,TotalOrderAmount	=	SUM(Quantity	*	UnitPrice)	From	Customers	Join
Orders	on	Orders.CustomerID	=	Customers.CustomerID
				Join	OrderDetails	on	Orders.OrderID	=	OrderDetails.OrderID
Where	OrderDate	>=	'20160101'
				and	OrderDate		<	'20170101'
Group	by	Customers.CustomerID
				,Customers.CompanyName	--,Orders.Orderid	Having	sum(Quantity	*
UnitPrice)	>	15000
Order	by	TotalOrderAmount	desc;

Discussion
All	that	was	necessary	here	was	to	comment	out
references	in	the	Select	clause	and	the	Group	By	clause	to
OrderID.	By	doing	that,	we're	grouping	at	the	Customer
level,	and	not	at	the	Order	level.

34.											High-value	customers	-	with	discount

Answer
	
Select	Customers.CustomerID
				,Customers.CompanyName	,TotalsWithoutDiscount	=	SUM(Quantity	*
UnitPrice)	,TotalsWithDiscount	=	SUM(Quantity	*	UnitPrice	*	(1-	Discount))
From	Customers	Join	Orders	on	Orders.CustomerID	=	Customers.CustomerID
				Join	OrderDetails	on	Orders.OrderID	=	OrderDetails.OrderID
Where	OrderDate	>=	'20160101'
				and	OrderDate		<	'20170101'
Group	by	Customers.CustomerID
				,Customers.CompanyName	Having	sum(Quantity	*	UnitPrice	*	(1-
Discount))	>	10000
Order	by	TotalsWithDiscount	DESC;

Discussion
Note	that	you	need	to	use	the	new	calculation	for	order
totals	with	discounts	in	the	Select	clause,	the	Having
clause,	and	also	the	Order	by	clause.	In	the	Order	by
clause,	you	can	re-use	the	alias	that	you	created	in	the
Select	clause,	but	in	the	Having	clause,	you	need	to
repeat	the	calculation.

35.												Month-end	orders

Answer
Select
				EmployeeID
				,OrderID
				,OrderDate
From	Orders
Where	OrderDate	=	EOMONTH(OrderDate)
Order	by
				EmployeeID
				,OrderID

Discussion
Very	frequently	the	end	of	the	month	will	be	needed	in
queries	and	reports.	The	function	EOMONTH	was
introduced	in	SQL	Server	2012,	so	before	that	point,
developers	had	to	use	a	combination	of	functions	like	the
below:
Where	OrderDate	=	dateadd(month,1	+	datediff(month,0,OrderDate),-1)

36.												Orders	with	many	line	items

Answer
Select	top	10
				Orders.OrderID
				,TotalOrderDetails	=	count(*)
From	Orders
				Join	OrderDetails
								on	Orders.OrderID	=	OrderDetails.OrderID
Group	By	Orders.OrderID
Order	By	count(*)	desc
	

Discussion
What	happens	when	you	select	the	top	50	instead	of	top
10?	There	are	many	more	rows	that	have	5	as	the
TotalOrderDetails.	If	you	want	to	show	all	of	them	you
can	use	the	With	Ties	option	as	below:	Select	top	10
With	Ties	Orders.OrderID
				,TotalOrderDetails	=	count(*)	From	Orders	Join	OrderDetails	on
Orders.OrderID	=	OrderDetails.OrderID
Group	By	Orders.OrderID
Order	By	count(*)	desc	Note	that	the	same	query,	with	the	“With	Ties”
keyword,	now	returns	37	rows	because	there	are	many	rows	with	a	value	of	5	for
TotalOrderDetails.

37.												Orders	-	random	assortment

Answer
Select	top	2	percent
				OrderID
From	Orders
Order	By	NewID()
	

Discussion
The	NewID()	function	creates	a	globally	unique	identifier
(GUID).		When	you	order	by	this	identifier,	you	get	a
random	sorting.	In	this	case,	we're	using	top	2	percent
...to	get	the	top	2	percent	instead	of	a	specific	number	of
rows.
Using	NewID()	on	a	very	large	table	can	cause	some
problems,	see	this	article	(https://msdn.microsoft.com/en-
us/library/cc441928.aspx)	for	more	details.

https://msdn.microsoft.com/en-us/library/cc441928.aspx

38.												Orders	-	accidental	double-entry

Answer
Select
				OrderID
From	OrderDetails
Where	Quantity	>=	60
Group	By
				OrderID
				,Quantity
Having	Count(*)	>	1

Discussion
This	SQL	shows	orders	that	have	at	least	1	order	detail
with	a	quantity	of	60	or	more	(the	Where	clause),	and	the
quantity	is	duplicated	within	the	order	(the	Group	by	and
Having	clause).	This	occurs	because	we're	grouping	on
both	OrderID	and	Quantity.

39.												Orders	-	accidental	double-entry	details

Answer
;with	PotentialDuplicates	as	(
				Select
								OrderID
				From	OrderDetails
				Where	Quantity	>=	60
				Group	By	OrderID,	Quantity
				Having	Count(*)	>	1
)
Select
				OrderID
				,ProductID
				,UnitPrice
				,Quantity
				,Discount
From	OrderDetails
Where
				OrderID	in	(Select	OrderID	from	PotentialDuplicates)
Order	by
				OrderID
				,Quantity

Discussion
There	are	quite	a	few	different	ways	of	getting	the	same
results	for	this	problem.	Based	on	years	of	painful
troubleshooting	caused	by	poorly-written,	tangled	SQL,	I
suggest	that	writing	easily	understandable,
straightforward	code	is	one	of	the	most	important	things
to	strive	for.	Using	a	well	thought-out	CTE	is	one	way	of
doing	this.
In	the	next	problem,	we'll	look	at	another	way	of	getting
the	same	result.

40.											Orders	-	accidental	double-entry	details,
derived	table

Answer
Select
				OrderDetails.OrderID
				,ProductID
				,UnitPrice
				,Quantity
				,Discount
From	OrderDetails
				Join	(
								Select	distinct
												OrderID
								From	OrderDetails
								Where	Quantity	>=	60
								Group	By	OrderID,	Quantity
								Having	Count(*)	>	1
)		PotentialProblemOrders
								on	PotentialProblemOrders.OrderID	=	OrderDetails.OrderID
Order	by	OrderID,	ProductID
	

Discussion
Note	the	Distinct	keyword,	added	after	the	Select	in	the
derived	table.	This	gives	us	only	distinct	rows	in	the
output,	which	avoids	the	problem	with	duplicate
OrderIDs.

41.													Late	orders

Answer
Select
				OrderID
				,OrderDate	=	convert(date,	OrderDate)
				,RequiredDate	=	convert(date,	RequiredDate)
				,ShippedDate	=	convert(date,	ShippedDate)
From	Orders
Where
				RequiredDate	<=	ShippedDate

Discussion
This	is	a	straight-forward	query	that	we'll	use	as	a	base
for	future	problems.

42.											Late	orders	-	which	employees?

Answer
Select
				Employees.EmployeeID
				,LastName
				,TotalLateOrders	=	Count(*)
From	Orders
				Join	Employees
								on	Employees.EmployeeID	=	Orders.EmployeeID
Where
				RequiredDate	<=	ShippedDate
Group	By
				Employees.EmployeeID
				,Employees.LastName
Order	by	TotalLateOrders	desc
	

Discussion
Note	that	both	the	LastName	and	the	EmployeeID	from
the	Employees	table	need	to	be	included	in	the	Group	by
clause,	otherwise	we	get	the	error:
Msg	8120,	Level	16,	State	1,	Line	3
Column	'Employees.LastName'	is	invalid	in	the	select	list	because	it	is	not
contained	in	either	an	aggregate	function	or	the	GROUP	BY	clause.
	
Technically,	EmployeeID	is	a	primary	key	field,	and
since	we’re	grouping	by	that	already,	there	can	only	be
one	LastName	associated	with	an	EmployeeID.	However,
the	database	engine	doesn’t	know	this,	and	still	requires
the	LastName	in	the	Group	by	clause.

43.											Late	orders	vs.	total	orders

Answer
;With	LateOrders	as	(
				Select	EmployeeID
								,TotalOrders	=	Count(*)	From	Orders	Where	RequiredDate	<=
ShippedDate	Group	By	EmployeeID
)	,	AllOrders	as	(
				Select	EmployeeID
								,TotalOrders	=	Count(*)	From	Orders	Group	By	EmployeeID
)	Select	Employees.EmployeeID
				,LastName	,AllOrders	=	AllOrders.TotalOrders	,LateOrders	=
LateOrders.TotalOrders	From	Employees	Join	AllOrders	on
AllOrders.EmployeeID	=	Employees.EmployeeID
				Join	LateOrders	on	LateOrders.EmployeeID	=	Employees.EmployeeID
	

Discussion
The	above	query	is	almost	correct,	but	if	you're	paying
careful	attention,	you'll	realize	it	has	a	slight	problem.
We'll	learn	more	in	the	next	problem.

44.											Late	orders	vs.	total	orders	-	missing
employee

Answer
;With	LateOrders	as	(
				Select	EmployeeID
								,TotalOrders	=	Count(*)	From	Orders	Where	RequiredDate	<=
ShippedDate	Group	By	EmployeeID
)	,	AllOrders	as	(
				Select	EmployeeID
								,TotalOrders	=	Count(*)	From	Orders	Group	By	EmployeeID
)	Select	Employees.EmployeeID
				,LastName	,AllOrders	=	AllOrders.TotalOrders	,LateOrders	=
LateOrders.TotalOrders	From	Employees	Join	AllOrders	on
AllOrders.EmployeeID	=	Employees.EmployeeID
				Left	Join	LateOrders	on	LateOrders.EmployeeID	=	Employees.EmployeeID
	

Discussion
If	we	wanted	to	show	all	employees,	even	if	they	had	no
orders,	we	would	also	have	needed	to	use	a	Left	Join	for
AllOrders.

45.											Late	orders	vs.	total	orders	-	fix	null

Answer
;With	LateOrders	as	(
				Select	EmployeeID
								,TotalOrders	=	Count(*)	From	Orders	Where	RequiredDate	<=
ShippedDate	Group	By	EmployeeID
)	,	AllOrders	as	(
				Select	EmployeeID
								,TotalOrders	=	Count(*)	From	Orders	Group	By	EmployeeID
)	Select	Employees.EmployeeID
				,LastName	,AllOrders	=	AllOrders.TotalOrders	,LateOrders	=
IsNull(LateOrders.TotalOrders,	0)	From	Employees	Join	AllOrders	on
AllOrders.EmployeeID	=	Employees.EmployeeID
				Left	Join	LateOrders	on	LateOrders.EmployeeID	=	Employees.EmployeeID
	

Discussion
Using	a	straightforward	IsNull	on	LateOrder	is	the	best
way	to	solve	this	problem.
Another	way	to	write	it	would	be	using	a	Case	statement
LateOrders	=
				Case	When	LateOrders.TotalOrders	is	null	Then	0
								Else	LateOrders.TotalOrders	End	But	when	you	don’t	need	any	other	logic
besides	a	test	for	null,	IsNull	is	the	way	to	go.

46.											Late	orders	vs.	total	orders	-	percentage

Answer
;With	LateOrders	as	(
				Select	EmployeeID
								,TotalOrders	=	Count(*)	From	Orders	Where	RequiredDate	<=
ShippedDate	Group	By	EmployeeID
)	,	AllOrders	as	(
				Select	EmployeeID
								,TotalOrders	=	Count(*)	From	Orders	Group	By	EmployeeID
)	Select	Employees.EmployeeID
				,LastName	,AllOrders	=	AllOrders.TotalOrders	,LateOrders	=
IsNull(LateOrders.TotalOrders,	0)	,PercentLateOrders	=
								(IsNull(LateOrders.TotalOrders,	0)	*	1.00)	/	AllOrders.TotalOrders	From
Employees	Join	AllOrders	on	AllOrders.EmployeeID	=	Employees.EmployeeID
				Left	Join	LateOrders	on	LateOrders.EmployeeID	=	Employees.EmployeeID

Discussion
If	you	just	add	a	field	like	this:	PercentLateOrders	=
LateOrders.TotalLateOrders/AllOrders.TotalOrders	…
you'll	get	0	for	all	the	fields,	although	that's	obviously	not
correct.	But	this	is	what	happens	when	you	divide	two
integers	together.	You	need	to	convert	one	of	them	to	a
data	type	such	as	decimal.	A	common	way	to	convert	to	a
decimal	datatype	is	by	multiplying	by	1.00
Note	that	you	need	to	convert	the	integer	to	a	decimal
before	you	do	the	division.	If	you	do	it	after	the	division,
like	this:	(IsNull(LateOrders.TotalOrders,	0)		/
AllOrders.TotalOrders)	*	1.00
	
…	you'll	still	get	0.

47.											Late	orders	vs.	total	orders	-	fix	decimal

Answer
;With	LateOrders	as	(
				Select	EmployeeID
								,TotalOrders	=	Count(*)	From	Orders	Where	RequiredDate	<=
ShippedDate	Group	By	EmployeeID
)	,	AllOrders	as	(
				Select	EmployeeID
								,TotalOrders	=	Count(*)	From	Orders	Group	By	EmployeeID
)	Select	Employees.EmployeeID
				,LastName	,AllOrders	=	AllOrders.TotalOrders	,LateOrders	=
IsNull(LateOrders.TotalOrders,	0)	,PercentLateOrders	=
								Convert(
												Decimal	(10,2)	,(IsNull(LateOrders.TotalOrders,	0)	*	1.00)	/
AllOrders.TotalOrders)	From	Employees	Join	AllOrders	on
AllOrders.EmployeeID	=	Employees.EmployeeID
				Left	Join	LateOrders	on	LateOrders.EmployeeID	=	Employees.EmployeeID
	

Discussion
Rounding,	truncating,	and	converting	data	types	can	get
complicated,	and	there	are	many	ways	that	you	could	get
unexpected	results.	Always	check	your	results	carefully,
and	know	whether	you	want	rounding,	or	truncation.
Frequently,	when	creating	this	kind	of	query,	you’ll	put
the	output	into	a	tool	like	Excel,	and	do	any	additional
formatting	such	as	setting	the	decimal	precision	there.
However,	it’s	good	to	at	least	know	how	to	do	it	in	SQL.
You	may	have	noticed	that	I	added	some	new	lines	in	the
calculation	to	make	it	easier	to	read.	This	isn’t	necessary,
but	it’s	good	programming	practice,	and	easier	to	read
and	troubleshoot	compared	to	having	everything	on	one
line.

48.											Customer	grouping

Answer
;with	Orders2016	as	(
				Select	Customers.CustomerID
								,Customers.CompanyName	,TotalOrderAmount	=	SUM(Quantity	*
UnitPrice)	From	Customers	Join	Orders	on	Orders.CustomerID	=
Customers.CustomerID
								Join	OrderDetails	on	Orders.OrderID	=	OrderDetails.OrderID
				Where	OrderDate	>=	'20160101'
								and	OrderDate		<	'20170101'
				Group	by	Customers.CustomerID
								,Customers.CompanyName)	Select	CustomerID
				,CompanyName	,TotalOrderAmount	,CustomerGroup	=
								Case	when	TotalOrderAmount	between	0	and	1000	then	'Low'
												when	TotalOrderAmount	between	1001	and	5000	then	'Medium'
												when	TotalOrderAmount	between	5001	and	10000	then	'High'
												when	TotalOrderAmount	>	10000	then	'Very	High'
								End	from	Orders2016
Order	by	CustomerID

Discussion
(Note	-	there's	a	small	bug	in	the	above	SQL,	which	we'll
review	in	the	next	problem.)	The	CTE	works	well	for	this
problem,	but	it's	not	strictly	necessary.	You	could	also
use	SQL	like	this:	Select	Customers.CustomerID
				,Customers.CompanyName	,TotalOrderAmount	=	SUM(Quantity	*	UnitPrice)
,CustomerGroup	=
								Case	when	SUM(Quantity	*	UnitPrice)	between	0	and	1000	then	'Low'
												when	SUM(Quantity	*	UnitPrice)	between	1001	and	5000	then	'Medium'
												when	SUM(Quantity	*	UnitPrice)	between	5001	and	10000	then	'High'
												when	SUM(Quantity	*	UnitPrice)	>	10000	then	'Very	High'
								End	From	Customers	Join	Orders	on	Orders.CustomerID	=
Customers.CustomerID
				Join	OrderDetails	on	Orders.OrderID	=	OrderDetails.OrderID
Where	OrderDate	>=	'20160101'
				and	OrderDate		<	'20170101'
Group	By	Customers.CustomerID
				,Customers.CompanyName	This	gives	the	same	result,	but	notice	that	the
calculation	for	getting	the	TotalOrderAmount	was	repeated	5	times,	including
the	4	times	in	the	Case	statement.
It's	best	to	avoid	repeating	calculations	like	this.	The
calculations	will	usually	be	quite	complex	and	difficult	to
read,	and	you	want	to	have	them	only	in	one	place.	In
something	simple,	like	Quantity	*	UnitPrice,	it's	not
necessarily	a	problem.	But	most	of	the	time,	you	should
avoid	repeating	any	calculations	and	code.	An	easy	way
to	remember	this	is	with	the	acronym	DRY	-	“Don’t
Repeat	Yourself”.	Here’s	an	article
(https://en.wikipedia.org/wiki/Don%27t_repeat_yourself)
on	the	topic.

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

49.											Customer	grouping	-	fix	null

Answer
;with	Orders2016	as	(
				Select	Customers.CustomerID
								,Customers.CompanyName	,TotalOrderAmount	=	SUM(Quantity	*
UnitPrice)	From	Customers	Join	Orders	on	Orders.CustomerID	=
Customers.CustomerID
								Join	OrderDetails	on	Orders.OrderID	=	OrderDetails.OrderID
				Where	OrderDate	>=	'20160101'
								and	OrderDate		<	'20170101'
				Group	by	Customers.CustomerID
								,Customers.CompanyName)	Select	CustomerID
				,CompanyName	,TotalOrderAmount	,CustomerGroup	=
								case	when	TotalOrderAmount	>=	0	and	TotalOrderAmount		<	1000	then
'Low'
												when	TotalOrderAmount	>=	1000	and	TotalOrderAmount		<	5000	then
'Medium'
												when	TotalOrderAmount	>=	5000	and	TotalOrderAmount		<10000	then
'High'
												when	TotalOrderAmount	>=	10000	then	'Very	High'
								end	from	Orders2016
Order	by	CustomerID

Discussion
As	you've	been	seeing	in	the	above	problems,	knowing
the	data	types	you're	working	with	and	understanding	the
differences	between	them	is	important	to	get	the	right
results.	Using	“between”	would	have	been	fine	for
integer	values,	but	not	for	Money.

50.												Customer	grouping	with	percentage

Answer
;with	Orders2016	as	(
				Select	Customers.CustomerID
								,Customers.CompanyName	,TotalOrderAmount	=	SUM(Quantity	*
UnitPrice)	From	Customers	join	Orders	on	Orders.CustomerID	=
Customers.CustomerID
								join	OrderDetails	on	Orders.OrderID	=	OrderDetails.OrderID
				Where	OrderDate	>=	'20160101'
								and	OrderDate		<	'20170101'
				Group	By	Customers.CustomerID
								,Customers.CompanyName)	,CustomerGrouping	as	(
				Select	CustomerID
								,CompanyName	,TotalOrderAmount	,CustomerGroup	=
												case	when	TotalOrderAmount	>=	0	and	TotalOrderAmount		<	1000	then
'Low'
																when	TotalOrderAmount	>=	1000	and	TotalOrderAmount		<	5000
then	'Medium'
																when	TotalOrderAmount	>=	5000	and	TotalOrderAmount		<10000
then	'High'
																when	TotalOrderAmount	>=	10000	then	'Very	High'
												end	from	Orders2016
				--	Order	by	CustomerID
)	Select	CustomerGroup	,	TotalInGroup	=	Count(*)	,	PercentageInGroup	=
Count(*)	*	1.0/	(select	count(*)	from	CustomerGrouping)	from
CustomerGrouping	group	by	CustomerGroup	order	by	TotalInGroup		desc

Discussion
In	the	answer	we	added	an	intermediate	CTE	called
CustomerGrouping.	CustomerGrouping	is	referenced
twice	-	once	to	get	the	total	number	of	customers	in	the
group,	and	once	to	get	the	total,	as	the	denominator	for
the	percentage.
Notice	that	the	Order	by	in	the	second	CTE	is	commented
out.	If	you	leave	it	in,	you	get	this	error:
Msg	1033,	Level	15,	State	1,	Line	32
The	ORDER	BY	clause	is	invalid	in	views,	inline	functions,	derived	tables,
subqueries,	and	common	table	expressions,	unless	TOP,	OFFSET	or	FOR	XML
is	also	specified.
	

51.													Customer	grouping	-	flexible

Answer
;with	Orders2016	as	(
				Select	Customers.CustomerID
								,Customers.CompanyName	,TotalOrderAmount	=	SUM(Quantity	*
UnitPrice)	From	Customers	Join	Orders	on	Orders.CustomerID	=
Customers.CustomerID
								Join	OrderDetails	on	Orders.OrderID	=	OrderDetails.OrderID
				Where	OrderDate	>=	'20160101'
								and	OrderDate		<	'20170101'
				Group	by	Customers.CustomerID
								,Customers.CompanyName)	Select	CustomerID
				,CompanyName	,TotalOrderAmount	,CustomerGroupName	from	Orders2016
				Join	CustomerGroupThresholds	on	Orders2016.TotalOrderAmount	between
CustomerGroupThresholds.RangeBottom	and
CustomerGroupThresholds.RangeTop	Order	by	CustomerID
	

Discussion
Note	that	this	gives	the	same	results	as	the	original
problem.	However,	instead	of	using	hard-coded	values	in
the	Case	statement	to	define	the	boundaries	of	the
CustomerGroups,	you	have	them	in	a	table.
The	benefit	of	this	is	that	you	don't	need	to	duplicate	the
following	code	in	every	query	where	you	need	to	group
customers,	since	it's	defined	in	the	table.
,CustomerGroup	=
				case	when	TotalOrderAmount	>=	0	and	TotalOrderAmount		<	1000	then
'Low'
								when	TotalOrderAmount	>=	1000	and	TotalOrderAmount		<	5000	then
'Medium'
								when	TotalOrderAmount	>=	5000	and	TotalOrderAmount		<10000	then
'High'
								when	TotalOrderAmount	>=	10000	then	'Very	High'
				end	Also,	take	a	look	at	the	values	in	CustomerGroupThresholds.
select	*	From	CustomerGroupThresholds	Note	that	there's	no	overlap	between
the	rows,	with	regards	to	the	RangeBottom	and	RangeTop.	If	it	were	a	data	type
besides	Money	(which	goes	to	4	decimal	places),	there	might	be	gaps	or	overlap.

52.												Countries	with	suppliers	or	customers

Answer
Select	Country	From	Customers
Union
Select	Country	From	Suppliers
Order	by	Country
	

Discussion
There	are	2	ways	of	using	the	Union	statement.	One	is	a
simple	Union	as	in	the	answer	here.	Using	a	simple
Union	statement	eliminates	all	the	duplicates	in	the
resultset.
	
You	can	also	use	Union	All.	Try	it	and	take	a	look	at	the
resultset:	Select	distinct	Country	From	Customers	Union
All	Select	distinct	Country	From	Suppliers	Order	by
Country	Notice	that	within	the	individual	SQL
statements,	I’ve	put	a	Distinct.	However,	there	are	still
duplicates	in	the	final	output,	because	we	have	Union	All,
which	doesn’t	eliminate	duplicates.

53.												Countries	with	suppliers	or	customers,
version	2

Answer
;With	SupplierCountries	as
				(Select	Distinct	Country	from	Suppliers)
,CustomerCountries	as
				(Select	Distinct	Country	from	Customers)
Select
				SupplierCountry	=	SupplierCountries	.Country
				,CustomerCountry	=	CustomerCountries	.Country
From	SupplierCountries
				Full	Outer	Join	CustomerCountries
								on	CustomerCountries.Country	=	SupplierCountries.Country

Discussion
The	Full	Outer	join	isn’t	commonly	used,	but	in	certain
situations	it’s	critical.	Another	way	that	these	queries
could	have	been	joined	is	via	a	derived	table,	like	below.
	
Select	SupplierCountry	=	SupplierCountries	.Country	,CustomerCountry	=
CustomerCountries	.Country	From	(Select	Distinct	Country	from	Suppliers)
SupplierCountries	Full	Outer	Join	(Select	Distinct	Country	from	Customers)
CustomerCountries	on	CustomerCountries.Country	=	SupplierCountries.Country
In	this	instance,	you	get	the	identical	output	to	the	CTE	option,	but	I	think	the
CTE	option	is	easier	to	read.
Why	are	CTEs,	in	general,	easier	to	read?	The	main
reason	is	that	the	code	can	be	more	logically	structured,
and	read	from	top	to	bottom	without	needing	to	jump
around	to	different	sections.	See	this	article
(http://www.essentialsql.com/non-recursive-ctes/)	for
more	details.
Are	CTEs	always	the	answer?	No,	not	always.	The	main
case	in	which	you	should	switch	from	a	CTE	to
something	else	(for	instance,	a	table	variable	or
temporary	table)	would	be	when	you	need	to	reference
the	results	of	the	select	statement	multiple	times,	in	a
longer	piece	of	code

http://www.essentialsql.com/non-recursive-ctes/

54.											Countries	with	suppliers	or	customers	-
version	3

Answer
;With	SupplierCountries	as	(Select	Country	,	Total	=	Count(*)	from	Suppliers
group	by	Country)	,CustomerCountries	as	(Select		Country	,	Total	=	Count(*)
from	Customers	group	by	Country)	Select	Country	=	isnull(
SupplierCountries.Country,	CustomerCountries.Country)	,TotalSuppliers=
isnull(SupplierCountries.Total,0)	,TotalCustomers=
isnull(CustomerCountries.Total,0)	From	SupplierCountries	Full	Outer	Join
CustomerCountries	on	CustomerCountries.Country	=	SupplierCountries.Country

Discussion
Note	that	we	had	to	switch	from	Distinct	to	Group	By	in
the	CTE,	because	we	needed	to	get	the	total	with
Count(*),	for	which	you	need	to	do	a	Group	By.
The	Full	Outer	type	join	is	not	very	commonly	used,	but
in	some	situations,	it’s	the	only	thing	that	will	get	the
results	we	want.

55.												First	order	in	each	country

Answer
;with	OrdersByCountry	as
(
				Select
								ShipCountry
								,CustomerID
								,OrderID
								,OrderDate	=	convert(date,	OrderDate)
								,RowNumberPerCountry	=	
												Row_Number()
																over	(Partition	by	ShipCountry	Order	by	ShipCountry,	OrderID)
				From	Orders
)
Select
				ShipCountry
				,CustomerID
				,OrderID
				,OrderDate
From	OrdersByCountry
Where
				RowNumberPerCountry	=	1
Order	by
				ShipCountry

Discussion
Before	Window	functions	were	available,	in	previous
versions	of	SQL	Server,	there	were	other	options	to	get
the	same	results.
The	below	returns	the	same	resultset	as	we	got	with	the
Row_Number()	function:	;with	FirstOrderPerCountry	as	(
				Select	ShipCountry	,MinOrderID	=	min(OrderID)	From	Orders	Group	by
ShipCountry)	Select	Orders.ShipCountry	,CustomerID
				,OrderID
from	FirstOrderPerCountry	Join	Orders	on	Orders.OrderID	=
FirstOrderPerCountry.MinOrderID
Order	by	Orders.ShipCountry	However,	what	if	we	had	wanted	to	order	by
something	else,	and	not	the	OrderID?	For	instance,	the	ShippedDate?	Since
ShippedDate	isn’t	a	unique	value	like	OrderID,	we	would	not	have	been	able	to
join	on	it.
There	are	workarounds	for	this	issue,	but	a	Window
function	is	definitely	easier.

56.												Customers	with	multiple	orders	in	5	day
period

Answer
Select	InitialOrder.CustomerID
				,InitialOrderID	=	InitialOrder.OrderID
				,InitialOrderDate	=	convert(date,	InitialOrder.OrderDate)	,NextOrderID	=
NextOrder.OrderID
				,NextOrderDate	=	convert(date,	NextOrder.OrderDate)	,DaysBetween	=
datediff(dd,	InitialOrder.OrderDate,	NextOrder.OrderDate)	from	Orders
InitialOrder	join	Orders	NextOrder	on	InitialOrder.CustomerID	=
NextOrder.CustomerID
where	InitialOrder.OrderID	<	NextOrder.OrderID
				and	datediff(dd,	InitialOrder.OrderDate,	NextOrder.OrderDate)	<=	5
Order	by	InitialOrder.CustomerID
				,InitialOrder.OrderID

Discussion
Including	multiple	instances	of	a	table	is	one	way	of
finding	the	answer	we	need.
When	aliasing	tables	and	columns,	be	careful	to	name
them	something	meaningful,	that	you	can	read	and
understand	your	SQL.

57.												Customers	with	multiple	orders	in	5	day
period,	version	2

Answer
;With	NextOrderDate	as	(
				Select	CustomerID
								,OrderDate	=	convert(date,	OrderDate)	,NextOrderDate	=
												convert(
																date	,Lead(OrderDate,1)	OVER	(Partition	by	CustomerID	order	by
CustomerID,	OrderDate))	From	Orders)	Select	CustomerID
				,OrderDate	,NextOrderDate	,DaysBetweenOrders	=	DateDiff	(dd,	OrderDate,
NextOrderDate)	From	NextOrderDate	Where	DateDiff	(dd,	OrderDate,
NextOrderDate)		<=	5
	

Discussion
There’s	two	main	ways	of	solving	this	problem,	the	first
using	multiple	instances	of	the	table	(which	we	did	in	the
first	version	of	the	problem),	and	the	other	using	Window
functions.
Which	is	better?	If	we’re	okay	with	getting	a	narrower
resultset,	I’d	prefer	this	version,	using	the	Lead	window
function,	instead	of	the	previous	solution.
But	if	we	need	multiple	columns	from	the	following
order,	then	it’s	best	to	use	the	first	version.	Otherwise,
you’d	need	multiple	calculated	columns	with	the	same
Partition	and	Order	by.
Notice	that	the	row	count	between	the	2	answers	are
slightly	different,	71	and	69.	You	can	use	this	SQL	to
look	at	one	difference	in	more	detail.
Select	CustomerID
				,OrderID
				,OrderDate	From	Orders	Where	CustomerID	=	'ERNSH'
	Order	by	CustomerID
				,OrderID
	
What	causes	the	difference	between	the	2	answers?
	
	
	
	

Congratulations!
	

You’re	finished!	If	you	have	a	moment,	I	would	really
appreciate	a	review	of	the	book	on	Amazon.com	
(https://www.amazon.com/SQLPractice-Problems-learn-
doing/dp/1540422658).	Your	honest	opinon	can	help
people	decide	between	the	many	SQL	learning	options
available.
Now	that	you’ve	completed	the	practice	problems,
you’ve	improved	your	SQL	skills	tremendously.	If
you’ve	just	read	through	the	book	without	actually
writing	out	the	SQL—that’s	a	great	start!	I	encourage	you
to	go	through	the	problems	again,	this	time	actually
working	out	the	SQL,	and	not	looking	at	the	answers	and
hints	unless	you	need	to.
	
Any	comments	and	sugggestions	are	most	welcome!

Please	email	me	at:
feedback@SQLPracticeProblems.com.

	
Thank	you!

https://www.amazon.com/SQL-Practice-Problems-learn-doing/dp/1540422658
mailto:feedback@SQLPracticeProblems.com

Sylvia	Moestl	Vasilik

	How to use this book
	Setup
	Introductory Problems
	1.Which shippers do we have?
	2.Certain fields from Categories
	3.Sales Representatives
	4.Sales Representatives in the United States
	5.Orders placed by specific EmployeeID
	6.Suppliers and ContactTitles
	7.Products with “queso” in ProductName
	8.Orders shipping to France or Belgium
	9.Orders shipping to any country in Latin America
	10.Employees, in order of age
	11.Showing only the Date with a DateTime field
	12.Employees full name
	13.OrderDetails amount per line item
	14.How many customers?
	15.When was the first order?
	16.Countries where there are customers
	17.Contact titles for customers
	18.Products with associated supplier names
	19.Orders and the Shipper that was used

	Intermediate Problems
	20.Categories, and the total products in each category
	21.Total customers per country/city
	22.Products that need reordering
	23.Products that need reordering, continued
	24.Customer list by region
	25.High freight charges
	26.High freight charges - 2015
	27.High freight charges with between
	28.High freight charges - last year
	29.Inventory list
	30.Customers with no orders
	31.Customers with no orders for EmployeeID 4

	Advanced Problems
	32.High-value customers
	33.High-value customers - total orders
	34.High-value customers - with discount
	35.Month-end orders
	36.Orders with many line items
	37.Orders - random assortment
	38.Orders - accidental double-entry
	39.Orders - accidental double-entry details
	40.Orders - accidental double-entry details, derived table
	41.Late orders
	42.Late orders - which employees?
	43.Late orders vs. total orders
	44.Late orders vs. total orders - missing employee
	45.Late orders vs. total orders - fix null
	46.Late orders vs. total orders - percentage
	47.Late orders vs. total orders - fix decimal
	48.Customer grouping
	49.Customer grouping - fix null
	50.Customer grouping with percentage
	51.Customer grouping - flexible
	52.Countries with suppliers or customers
	53.Countries with suppliers or customers, version 2
	54.Countries with suppliers or customers - version 3
	55.First order in each country
	56.Customers with multiple orders in 5 day period
	57.Customers with multiple orders in 5 day period, version 2

	ANSWERS
	Introductory Problems
	1.Which shippers do we have?
	2.Certain fields from Categories
	3.Sales Representatives
	4.Sales Representatives in the United States
	5.Orders placed by specific EmployeeID
	6.Suppliers and ContactTitles
	7.Products with “queso” in ProductName
	8.Orders shipping to France or Belgium
	9.Orders shipping to any country in Europe
	10.Employees, in order of age
	11.Showing only the Date with a DateTime field
	12.Employees full name
	13.OrderDetails amount per line item
	14.How many customers?
	15.When was the first order?
	16.Countries where there are customers
	17.Contact titles for customers
	18.Products with associated supplier names
	19.Orders and the Shipper that was used

	Intermediate Problems
	20.Categories, and the total products in each category
	21.Total customers per country/city
	22.Products that need reordering
	23.Products that need reordering, continued
	24.Customer list by region
	25.High freight charges
	26.High freight charges - 2015
	27.High freight charges with between
	28.High freight charges - last year
	29.Inventory list
	30.Customers with no orders
	31.Customers with no orders for EmployeeID 4

	Advanced Problems
	32.High-value customers
	33.High-value customers - total orders
	34.High-value customers - with discount
	35.Month-end orders
	36.Orders with many line items
	37.Orders - random assortment
	38.Orders - accidental double-entry
	39.Orders - accidental double-entry details
	40.Orders - accidental double-entry details, derived table
	41.Late orders
	42.Late orders - which employees?
	43.Late orders vs. total orders
	44.Late orders vs. total orders - missing employee
	45.Late orders vs. total orders - fix null
	46.Late orders vs. total orders - percentage
	47.Late orders vs. total orders - fix decimal
	48.Customer grouping
	49.Customer grouping - fix null
	50.Customer grouping with percentage
	51.Customer grouping - flexible
	52.Countries with suppliers or customers
	53.Countries with suppliers or customers, version 2
	54.Countries with suppliers or customers - version 3
	55.First order in each country
	56.Customers with multiple orders in 5 day period
	57.Customers with multiple orders in 5 day period, version 2

